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1 Complex numbers

That wonder of analysis, that porient af the ideal world, that amphibian between being and
nal bying, wiich we call the imaginary roat of weity
CATTFRIED WILHELM LEIRNIZ

In all our previous mathematics work, we have assumed that it is not possible
to have a square root of a negative number, For example. on page 26 of
Introdicing Pure Mathematics where we considered the solution of quadratic
equations, ax” + bx + ¢ = 0, we noted that when & — dace is less than zero, the
equabion 15 sand o have no real rools.

In fact, such an equation has two complex roots.

Take, for example, the solution of x° + 2x + 3 = 0. Using the quadratic
formula, we obtain

~24+ V412
2
-2+ -8
|

~2 4+ By =1
2

—24+ 221
)

= —| + 2=

There is no real number which is v~ 1. as the square of any rcal number is
always posilive.

Therefore, we say that +/—1 is an imaginary number. We denote +/—1 by i.
So, using i, we can express the roots of the equation above in the form

—1 &2
or -1 =v2i and —1-3

Note j is also used to represent v'— 1.

What is a complex number?

A complex number is a number of the form
a+1h

where a and b are real numbers and i* = 1.

For example. 3 + 51 is a complex number.

If @ = 0, the number is said to be wholly imaginary. If b = 0, the number is
real. If a complex number is 0, both @ and & are 0.



[
[

CHAPTER 1 COMPLEX NUMBERS

We usually use x + iy to represent an unknown complex number, and = 1o
represent x + iy. So, when the unknown in an equation is a complex number,
we denote it by z: for example, 2> — 40z + 40 = 0, whose roots are 2 + 6i.

In a similar way, we use w to represent a second unknown complex number,
where w = u +iv.

The complex conjugate

The complex number x — iy is called the complex conjugate (or often just the
conjugate) of x + iy, and is denoted by 7" or =.

For example, 2 — 3i is the complex conjugate of 2 + 3i, and the complex
conjugate of —8 — 9115 —8 + 9i.

Calculating with complex numbers

When we work with complex numbers, we use ordinary algebraic methods.
That means that we cannot combine a real number with an i-term. For
example, 2 4+ 31 cannot be simplified.

For two complex numbers to be equal, their real parts must be equal and their
imaginary parts must be equal.

This is a necessary condition for the equality of two complex numbers.
Hence,ifa+ib=c+id, thena=cand b = d.

For example, if 2 4+ 3i = x + 1y, then x = 2 and v = 3.

Addition and subtraction

When adding two complex numbers, we add the real terms and separately add
the i-terms. For example,

B+NMN+ME-=-6)=(3+4+(7i-06i)
=T+i

Generally, for addition we have
(x+p)+(u+iv) = (x +uw)+i(y + v)
and for subtraction
(x+iy)—(u+iv)=(x—w+i(y -
Example 1 Subtract 8 — 4i from 7+ 2i.

EOLUTION
T42i— (8 —4i)=7—8+ (2 +4i)

= —1 +6i
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CALCULATING WITH COMPLEX HNUMBERS

Example 2 Find x and v if v~ 21 4 2(3 = 5ip) = 8 — 134,
SOLUTION
Equating real terms, we get

x+6=8

= x=2

Equating imaginary terms, we get

2 1y =~-13
= 15= 10y
= y=1
Multiplication

We apply the general algebraic method for multiplication. For example,
(2+ N4 = ) = 24— 5) + 34 — 2)
=% — 10i 4 12i — 18°
Since i° = -1, this simplifies to
B—10i+ 12 —-15x—-1=8-10i+12i+ 13
=234 2

Generallv, we have
(@ +ibMe + id) = ac — bd + ilad + be)  since ¥ = ~1

Mote [t 15 simpler to multply out the numbers every time than 1o memonse
this formula.

Division
To be able to divide by a complex number, we have io change it to a real
number. Take, for example, the fraction

243

4+ 5

[n the simplitication of surds on page 408 of Ieroducing Pure Mathemarics, we

noted that -1~ L ~ could be simphified by multiplying the numeraior and the
4 4 _
denominator of this fraction by 1 — /3.

j
=
£

Similarly, to simplify

wie multiply 1ts numerator and its denominator by

4 — 51, which is the complex conjugate of the denominator. Thus, we have
243 _ (24 3)4 — 50
4+ 5 (4+ 544 — 50)
B+ 12— 10i — 157
B 4 — (5iy




CHAPTER 1 COMPLEX NUMBERS
23+
16 + 25

41 41

[Note: —(5i)* = —(=25) = 425]

I+
T-3

Example 3 Simplify

SOLUTIOM
Multiplying the numerator and the denominator by the complex
conjugate of 7 — 3i, which is 7 + 3i, we obtain
341 (34+1N7 + 3i)
T7=-3 (7=-37+3)
_ 21 +7i+9i + 3¢

72 - (i)
=% [Note: —(3i)* = —(~9) = +9]
-+
=%+%i or ;—g{‘i'-f- 8i)

(5= 307 +1)

Example 4 Simplify

SOLUTION

First, we simplify the numerator:

(5=3)7+1) _ 35 + 5i — 21i — 3i°

2=1i 2=1
35-16i+3
T 2
38— 16i
T2

We then multiply the numerator and the denominator of this fraction by
the complex conjugate of 2 — i, which is 2 + 1:
(38 = 16i)2 +1) _ 76 + 16 + 381 — 32
(2—=i)2+1) 4+ 1




Exercise 1A

1

10

EXERCISE 1A

Simplify each ol the following.
a) i’ b) i o i d) i’
Express each of the following complex numbers in the form a + ib.
a) 3+ 2v-1 b) 6~ 3v -1 c) —4+4v-9
d) -2+ -8 e) v—100 — /—64
Wrnite down the complex conjugate of z when = 1s:
a) 3+ 4i b) 2 - 6i c) -4 -3 d) 8+ 351
Solve each of the following equations.
a) 2 +2:44=0 b) 22 -3z46=0 ¢) 222 4+z4+1=0 dd:-3-22=0
Simplify each of the following.
a) (8 +4i)+(2—61) b) (—7+ 31) + (8 — 4i) ¢) 2-4i+3(-1+2i)
d) 4(=2+ 51+ 352+ T70) e) (8 + 3i)— (7 + 2i) ) (7 +6i) —(4-2i)
g) 2(9 — 3i) — 42 — 6i) h) 3(8 i) = 2(3 -~ 5))
Evaluate each of these expressions.
a) 3+12+ 3 b) (4 — 21)(5+ 31) c) (8 —1)(9 4+ 21)
d) (9 — 35 —1) e) 12— 3i)i+4) f) (3 - 207 - 5i)
Express each of these fractions in the form a + ih, where a. b € .

24 3i 4 4 3 8—i 2+ 5i

b % a4 d
* %= Y e ) 23 Y T3
Solve each of the following equations in x and .
a) x+iv=4-2i b) x+iy+3 —2i=4(-2+ 5i)
¢) x+iy=(2+i}3-2i) d) x4 1y = (3 5)4+1)
L . ) x+iy = (2 - 3
2-i

If = 3+i, find the value of = + .
Find the solution of each of the following equations,

8) XX +4x+7=0 b) X’ +2x+6=0 € 2 +6x+9=0 d)x -5x+25=0



CHAPTER 1 COMPLEX NUMBERS

Argand diagram

The French mathematician Jean Robert Argand (1768-1822) 15 credited with the
invention and development of the graphical representation of complex numbers
and the operations upon them, although others had anticipated his work. So,
this graphical representation has become known as the

Argand diagram.
In the Argand diagram, the complex number a + ib is Imaginary §
represented by the point (a, b), as shown on the right. s
Real numbers are represented on the x-axis and imaginary
numbers on the y-axis. Thus, the general complex number
{x + iy) is represented by the point (x, y).

ir - 3¢ . b

0 M Real

anis

. Example 5 Represent the complex number 2 + 3i on
= an Argand diagram. Show its complex conjugate. i
" 4
= soumon 34 M P23
= The number 2 + 3i is represented by the point .
s P(2,3) 7
E The complex conjugate is 2 — 3i, which is 14
»  represented by the point P'(2,-3).
: 2 -1 9 T 7 3§ Re
]
L -1
L]
. -2
L]
L
= -3 4 X P2, -3

Note The position of the complex conjugate =* can always be obtained by
reflecting the position of = in the real axis.

Modulus—argument or polar form of complex numbers

The position of point P(x, y) on the Argand diagram can be Im
given in terms of OP, the distance of P from the origin, and £,

the angle in the anticlockwise sense which OP makes with the Py
positive real axis.
The length OP is the modulus of =, denoted by |z, and this 3
length |z| 15 always taken to be positive. o

The angle # (normally in radians) is the argument of z, denoted
by argz. The principal value of # is taken to be between —n
and m.

T




ARGAND DIAGRAM

Connection between the x + iy form and the modulus—argument form

From the diagram on the right, we have Im 4
r=lzf = /x"+ " * Pia 1)
x=rcost? and y=rsind r |,
which give 9 ‘_] h
c=x4 iy =rcost +irsing o ’ Re

= rlcosf + isinth
To find 6. we use
tan ff = 4
X

but we need to take care when gither x or v is negative. {See part b in

Example 6.)

» Example 8 Find the modulus and argument of each of these complex
¥ numbers.

]

A 2+2V3 b)) -l

L

- SOLUTION

=

= 3 -

* a) Ims The modulus of 2 + 24/31 is given by
L

. 31 V2 2VE =4

L]

L] L - N .

- - 4 Its argument, @, is given by

L]

. " tan 'v3 =2

= P 3

: Q 1 s

L]

L

= b The modulus of —1 — 115 given by

- Im & R

. VT4 12 =412

]

- .. W

: . o Angle ¢ 1s ry Therefore, the argument
= .

. e Re {the angle from the positive real axis) is
- R on_ Inm

. o 2 4 4

L]

Mote If the angle in Example 6 1s measured anticlockwise from the positive
. . am .
real axis, its value is —4-. but this is not between 7 and —n. Thus, we take the

clockwise angle, which is - % The minus sign denotes that the angle is

measured in the clockwise sense.
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Multiplication of two complex numbers in modulus—argument form
Consider the complex numbers -y, and =, given by
s1=rn(costy +isindy) and z; = ri(cost; +isinf;)
Multiplying z; by =;, we get
512: = ry{cos 8 + isinf) rsicos s + 1510 i)
= ryra[(cos B, cos f1; — sin @, sin 05) + i(sin ) cos 0y + cos O, sin ;)]
= ryralcos (0 + 6;) + isin(0, + 0,)|
We can state this result as follows:

To find the product of two complex numbers, muliiply their moduli and add
their arguments.

Division of two complex numbers in modulus—-argument form
Dividing z;, by z;, we get

2y _ nlcost +isinfh) r, costh +isind,
z3  ricosf +isinfy) r, cost; + isinf,

Multiplying the numerator and the denominator by the complex conjugate of
cos s + isin s, we have

a_n (cos ), + isin & Ncos By — isinf;)

Zy  ry (cosfy <+ 1sin b )(cosy — isindy)

_ N cos 1, cos 1 + sin ), sin 0, + i{sin & cos 0y — cos 4, sin B5)
rs (cos?f; + sin’fs)

=L (cos (0, — 0y) +isin(0, — 02)]  since cos?0; + sin’f; = |
-
We can state this result as follows:

To find the quotient of two complex numbers, divide their moduli and subtract

their arguments.

Example 7 Find the modulus and argument of each of the following.

az=1+i bBw=-1+V3 oz a o=

SOLUTION
w= -1+ fii

a) From the diagram, we have
Modulus of z = 2

Argument of = = %

b) Modulus of w = /12 + (v3)* =2

.

Iy

Argument of w = 1 — = = =%
rgu o n n 3 3




¢) Modulus of zw = [z] x |wl = 2v/2
Argument of -w is
n . 2r lln
ArEz 4+ Argw = — + — = —
B T T
d) Using =° = z x z, we have
Modulus of 22 = |z] % |z] = V2 x v2 =12

Argument of 2% is

urg*+-1rg~—n+ﬂ a
=T - = —_— ==
4 4 2
W |w 2
e) Modulus of — =M = =/2
z zl W2
W .
Argument of — is
ar-;:n* i 2n m  Sm
W—argr="———=
© £ 34 12

Exercise 1B

Represent each of the following on an Argand diagram.

a) 2+ b) —3+ 3i &) -2+ 23
d) —1 -1 e) 4 fH5+12
q) —4 h) 6+ /13

Find the modulus and argument of cach of the complex numbers in Question 1.

Given that z = 3+ 44,

a) calculate © =* W

b} find i |z iy |== iy |2
¢) evaluate i) argz  d)argz i) args

Express the complex number = in its a + 1h form when:

d

a) [zj=2 and arg:z= bj |z =4 and arg-=

d) |z1=4 and argz= e) |z]=2 and arg:z=

sy w1
ol =13

a) Simplily | — i

=3 =1
A

e) |z| =1

nlzl=6

b) Find the modulus and argument of the complex number —5 4 12i

34 4
512

Given that = =

, find the modulus and argument of z.

{WIEC)

EXERCISE 18

i
and argz= - >
Tn
and argz =—
g i
IWIEC)
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7

I +i

Given that = = -, find
-4
a) zin the form a + 1b
b) the modulus and argument of =, (WIEC)
) Given that z; =5+iand z; = -2 + 3i,

a) show that |z,)* = 2|z
b) find arg(zz;).
i) Calculate, in the form a + ib, where a, b € R, the square roots of 16 — 301, (EDEXCEL)

Given that
s=tanx +i, where 0 <x < in
w = 4[cos (L x) + isin (7))
find in their simplest forms

0=l il) |=w| iii) arg = iv) arg (l) (OCR)
-

10 The complex number = is given by z = sin“x + isinzcosa, where 0 < o < lr: Simplifying your

answers as far as possible, lind
|zl i) arg s {OCR)

11 The complex numbers = and w are such that

z==2+3i owoe=]4 4+ 23i

a) Find w in the form p + 1. where p and g are real.

b) Display = and w on the same Argand diagram.

¢) Find argz, in radians, giving your answer to two decimal places.

d) Write down the complex number that represents the mid-point M of the line joining the
points = and zw. (EDEXCEL)

12 a) Find the roots of the equation =* + 4z + 7 = 0, giving your answers in the form p +i,/3.

13

14

where p and g are integers.
b) Show these roots on an Argand diagram.
¢) Find for each root
i) the modulus
i) the argument, in radians
giving your answers to three significant figures. (EDEXCEL)

By putting z = z + iy, find the complex number = which satisfies the equation
15
T4 =
2=
where =* denotes the complex conjugate of =. (NEAB)
Given that z; = | 4+ 21and =; = + {1, write =)z, and =L in the form p + ig. where p and g€ R.

29
In an Argand diagram, the origin O and the points representing 2,25, 2 z; are the vertices of a

rhombus. Find z; and sketch the rhombus on this Argand diagram.

6v/3

Show that |z;| = — (EDEXCEL)

10



15

16

17

18

EXERCISE

The complex numbers 2 and z, are given by

.'.|:q+1l. ::::—“

a) Show the points representing =; and =, on an Argand diagram.
b) Find the modulus of z; — =5,
¢) Find the complex number =L in the form a + ih, where @ and b are rational numbers.

o
4

d) Hence find the argument of =, giving your answer in radians to three significant figures.

e) Determine the values of the real constants p and g such that

+ig+ 35 .
PTM Y220 2 (EDEXCEL)
P—1g+3z;

o ==-3+4 =142

a) Express z;z» and = each in the form o +15 where a, b e R,

b) Display z; and =, on the same Argand diagram.
€) Find arg z;, giving your answer in radians to one decimal place.

Given that =, +(p +ig)z; = 0, where p. g € R,
d) obtain the value of p and the value of g¢. (EDEXCEL)

The complex number = is given by =z = =2 4 2i.

a) Find the modulus and argument of =,

b) Write down the modulus and argument nf%.

¢) Show on an Argand diagram the points A, HB and C representing the complex numbers =,
and = + % respectively.

d) Stale the value of /| ACB. (EDEXCEL)

& = —3[-"1' Ij‘!i
a) Find argz,. giving vour answer in radians to two decimal places.

The complex numbers z; and z; are given by z; = -3 + pi and z; = ¢ -+ 31, where p and ¢ are

real constants and p > g.

b) Given that z;z; = =y, find the value of p and the value of g.

¢) Using your values of p and g, plot the points corresponding to 2y, = and =y on an Argand
diagram,

d) Verify that 2z; + 23 — z; 15 real and find its value. (EDEXCEL)

11

1B

by | =
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19

20

i) Evaluate the square roots of the complex number 5 + 12i in the form a + ;. where a and b
are real.

i) If @ is the argument of either of these square roots, obtain the value of cos 47 as an exact
fraction. (NICCEA)

4 + 2i

— 1

a) The complex numbers = and w are such that = = (4 + 2i)3 — i) and w =

. Express

each of z and w in the form a + ib, where @ and b are real.
b) ) Write down the modulus and argument of each of the complex numbers 4 + 2i and 3 —i.
Give each modulus in an exact surd form and each argument in radians between —x and
.
if) The points O, P and Q in the complex plane represent the complex numbers 0 -+ Oi,
4 + 2i and 3 — i respectively. Find the exact length of P{) and hence, or otherwise, show
that triangle OPQ is right-angled. (AEB 97)

Loci in the complex plane

We know from our previous work on vector geometry that the vectora — b
connects the point with position vector b to the point with position vector a.
(See Introducing Pure Mathematics, page 498.) Similarly, in the complex plane,

Im

0|

=, joins the point =; to the point =.

From the diagram, we have

d oC = n1 and OP = :
Therefore, we obtain
CP = CO + OP
. == +z
Re

Using this fact, we can identify a number of loci.

Loci which should be recognised

- |z—:||=r

|z = z;| is the modulus or length of = — z;. That is, the
length of the line joining =, to a variable point z.

Thus, |z — z;| = r is the locus of a point, z, moving so
that the length of the line joining a fixed point z; to =z
is always r. Hence, the locus of = is a circle, centre 2,
and radius r.

12



LOCI IN THE COMPLEX PLAMNE

Example 8 State and sketch the locus of 2 —=2-= 31| = 1.

SOLUTION

This locus 1s |z — {2 + 3i)! = 3, which is a circle, centre (2, 3)
and radius 3.

[57]

Note When sketching this locus, show clearly that the circle touches the x-axis
and cuts the y-axis twice,

o argiz—=4#0

The point = satisfies this locus when the line joining 2, to =
has argument 0,

This is the half-line, starting a1 z;, inclined at 0 to the real
axis. (It is called a half-line because we want only that part
of the line which starts at 7))

Example 8 State and sketch the locus of arg(z - 2) = %

SOLUTION
Thas locus 1s the half-line starting at (2, 0), inclined at

i N
an angle UI‘E to the real axs.

e
—al=lz-n

The line joining 2 to z; is equal in length to the line joining =
1o =2, Therefore, the locus of = is the perpendicular bisector
of the line joining =; Lo 2.

Example 10 State the locus of [z — 3| = |z — 2il.

SOLUTION

This locus 15 the perpendicular bisector of the
line joining +3 to +2i.

13
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CHAPTER 1" COMPLEX NUMBERS

o |z=z5|=k|lz—2;|, where k #1

The locus of P(z) is drawn so that the length of the line Im
joining P to z; is k times the length of the line joining P Piz)

o I3,
Assuming s =x+1y, 5 = x + 11y and =3 = x4 1), ~

Pythagoras' theorem gives

|z —z| = \/[.t-!l’1}:+['ll'—_l-‘|.'!: .

and |z =23| = ‘/{x —xF + (v =) 0 Re

Therefore, [z — z)| = k|z — ;| can be expressed as

v"[r —x)P+r=-nr= k\/{-r —x2)f +(y —32)
Squaring both sides, we get
(x—xi)F + (=) = Blx — xF + (- )]
= = 2xx + ] + 07 = 2 437 = 07 = 2000 + 0 + B = 2 + K
= (1= +(1 =) —x(2q - 22x0) - W2y -2+ 3+ -kl -i=0

In this equation, the coefficients of x and v are the same, and there 15 no term
in xy. Therefore, the locus of = is a circle.

By symmetry, a diameter of this circle lies on the line joining z, to 5.

MNote We recall from earlier work (Iniroducing Pure Mathematics, page 220)
that the equation of a circle, centre (a. b) and radius r, 1s

(x—=a)l+(y=-bF =2
This equation may also be written as
24P +2ex+2y+c=0

To find the centre and the radius of a circle when its equation is written in this
form, we use the method of completing the square:

X+ +2ex+2r+c=0
(x+g) ' +(+N) =g+ -¢
Therefore, the centre of the circle is (—g, —f), and its radius is /g* + /7 — ¢.

Example 11 Find the locus of |z - 2| = 3|z + 2.
SOLUTION
Let A be (—=2,0) and B be (2,0). Im

The locus required is the locus of P when BP = 3AP.

To find this circle, we determine the two points
at which 1t intersects the line joining A to B.
X \

The point (-1, 0) satisfies this condition. - 5]

b L

14
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LOCI IN THE COMPLEX PLAMNE

The other point on the line AB which satisfies this
condition 1s never between A and B, but on the line AB produced.

The point {—4.0) is the other point which satisfies the locus.

The points (—1,0) and {—4, 0} identify the diameter of the locus’s circle.
Therefore, the circle has centre !—.?é- .0y and radius IJJ-.

Its equation is |z + 24| = 2,

=4, 0} (=1, |0 B Re
|:.._ ]

Example 12 Find the locus of [z — 18] = 2|z + I8i|.
SOLUTION

To find the circle, we determine the two points at which i1 intersects the
line joining z; to z;. where z; = 18 and z; = - 18i.

The two points satisfying the locus are 6 — 12i and <18 — 36i.

These two points identify the diameter of the locus’s circle. Therefore, the
circle has its centre al —6 — 24i and has a radius of 12v/2,

Hence, its equation is |z + 6 + 24i| = 122,

Im &

4

Re

15



CHAPTER 1 COMPLEX NUMBERS

= I-I}
s arg —— =48
{z—=22)
To find this locus, we use the relatonship frm
L
arg — = argu — argy
-
Putiing ¥ = r — z; and v = z — 23, we get
arg — =arg(z — 1) — arg(z - 1)

= arglz—zs)—arg(z—zy) =10

Angles in the same segment are equal. Therefore, the
locus of z1s part of the circle through z; and z;

ishown dashed].

Example 13 Show the locus of = when

3

a)|z—4|=4 1) urg;':i
Find the point which satisfies both loci.

BOLUTION

The point which satisfies both loci 1s (4. 4) or (4 + ).

Note Usually, it is possible to find a common point on two separate loei by
using simple geometry and common sense. In Example 12, the point (4,4) can
readily be seen to be on both loci. To ealculate a common poini may involve

complicated algebra.

16

The two loci required are shown in the diagram on the right.

Re




LOCI IN THE COMPLEX PLANE

T
3

SOLUTION Im

Example 14 Find the locus 0['% <arglz—-2) <

We draw the two separate loci

T—arg(z—2) and arg(z-2)==
3 arg ( ) and arg( ) 3

ensuring that we select the correct sector.

o lz=g|+|z-nl=c

This locus is an ellipse, with =, and =, as foci (see section on ellipses, pages
222-6). To find the position of the ellipse, we have to find four points which
satisfy the locus:

# lwo points on the line joining =; to - produced, and
e two points on the perpendicular bisector of the line joining =, to zs.

Example 15 Find the locus of = when [z — 4| + |z + 2| = 10.

SOLUTION

First, we identify on the diagram the points A and B representing z; and
z5. These are (4,0) and (-2, 0).

Im

We then extend AB in both directions, where AB is of length 6.

Therefore. the points satisfving the locus are P(6.0) and Q( — 4,0), so that
PA = 2 and PB = 8, which gives PA + PB = 10.

Also, we have QA = 8 and QB = 2, which gives QA + QB = 10.
The perpendicular bisector of PO is the line x = 1.

The points satisfving the locus on this line are R(1,4) and S(1, —4), so that
RA =5, RB = 5 and hence RA + RB = 10.

These four points, P, Q, R and S, identify the major and minor axes of
the ellipse.

17
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Cube roots of unity

If = 1s & cube root of 1, we have
F=1
= F=1=0
= {z=I}ZF+2+1)=0
Therefore, either: = = 1, which is the real root, or

-
1

+z+1=0

[f w15 a complex cube root of 1. w # | and satisfies the equation
= 4+ 2+ 1 = 0. Hence, we have

Wwt+w+l=0 im§
—— il ] 'l‘
— u‘=:]—l;———- e —3 T
2 2

If we plot these three roots of I on an Argand diagram, we find
them to be symmetrically positioned on the circumference of a
circle of radius 1, as shown in the diagram on the right.

Square of a complex cube root of unity
If w is a complex cube root of 1, w* is also a complex cube root of 1.

Proof

If w is @ complex cube root of 1, then w* = 1. Therefore, we have
[h:f = n* = {u'Il: =]

That is, w* is also a complex cube root of 1.

MNote We found earlier that w = —é i -\'?1 Hence, we have
) V3L I 3
1] ("'E‘I‘T\ ar "E—Tl
Or we have
3 V3N 3
! (_E_T') o Ty

Thus. we obtain

s /3. .
l+w4+w = [14- ("%""Tjt) * (h%_-%l)] =0

which agrees with the equation found above.

18



EXERCISE 1C

Example 16 If w is the complex root of 1, find the value of w* + w®,
SOLUTION

W+t = oo + ()
Since w' = 1, we gel

W = w4 w?

Since 1 + w4+ w* =0, we find

wh 4wl =~

Example 17 If p is a cube root of 1, find the possible values of p* + p*.

SOLUTION
PF+p=p+pxp
=p 4+p sincep' =1
If pis real, p = 1, and thus p*> + p = 2.
If p is a complex cube root, we have
pF+p=-I1
Therefore, the possible values of p* + p* are 2 and —1.

Exercise 1C

1 Sketch the locus of =z when:

a) |z] =35 blz=3 ¢ |=-2|=3 dy |--2i|=4
o) |2+2+2 =22 N |z+3-3i| =23 o) 2z—i|=3
2 Sketch the locus of = when:
m in n:
a) argz =— b} argz = —— c) arg(z+2)=—
) arg 3 ) arg 4 ) arg( ) 5

f) :lrg[:—.‘!—mr""ji]':—z—i|T

d -3i)=2=
) arg( i) 3 2

e) arg{:+1+i}=%

3 Sketch the locus of = when:

18

a) |z=2|=|z=4| b) |z=6] =|z+3| ¢) |z—=i| =z = 2
) L | =—4
z+2d|=|z-12 —_— =]

9 | = | :+2+2i| " :+4‘
4 Sketch the locus of = when:
a) |z—-1]=3]z+2| b) [z+1i| = 2|z — 2i c) [z—1i| =4|-+ 3|
d) |z-2-i|=3z+6+3i] o) :Ll‘."—ﬂ
z4+2i



COMPLEX NUMBERS

CHAPTER 1
5 Sketch each of the following.
z n - m
r =- b) ar =—
'”E(:—z) 4 . E(:—]) 3
qar(’+:’i)~E ﬂamﬁi—)~5
B z=2 4 -+ 4 f
6 If wis a complex root of 1, simplify each of these.
a) w4+ uf b) w? + 't c) w4+ 4wl
7 If wis a cube root of 1, find the possible values of each of the following.
5 A
a) 1+w*+nw* b) w' +uf c “'+“.s d) w® + w!®
W=+ W

8 Find the solutions of (z = 2)' = 1.
9 With the aid of a sketch, explain why there is no complex number which satisfies both

lz=2—i|=|z—4+i

n
argz =— and
. 3

10 The complex number z = x + iy satisfies the equation
lz—9+4i| =3z-1 —4i|
The complex number z is represented by the point P in the Argand diagram.

a) Show that the locus of P is a circle.
b) State the centre and radius of this circle.

¢) Sketch the circle on an Argand diagram. {EDEXCEL)

11 A complex number = satisfies the inequality
Iz 42 - (2V3)i| € 2
Describe in geometrical terms, with the aid of a sketch, the corresponding region in an Argand

diagram. Find
i) the least possible value of |z
if) the greatest possible value of arg:=

12 The region R in an Argand diagram is defined by the inequalities

Izl =4 and |fj=|z-2|
Draw a clearly labelled diagram to illustrate R. {OCR)

13 The region R of an Argand diagram is defined by the inequalities

(OCR)

O<arg(z+4i)< in and |z] <4
Draw a clearly labelled diagram to illustrate R. (OCR)

14 Two complex numbers, = and w, satisfy the inequalities
l-3-2i|<2 and [w-7-35i|<1
. (OCR)

By drawing an Argand diagram, find the least possible value of |z — w|



EXERCISE 1C

15 The point P in the Argand diagram represents the complex number z and the point Q

|
represents the complex number w, where w = ——.

=+1
i) Find w when
a) == —1 b} z =1
expressing vour answers in the form w + iv.
ily Find - in terms of v

i) Given that P lies on the circle with centre the origin and radius 1, prove that [w) = lw— 1],
iv) Sketch the locus represented by jw| = |w = 1], {DCR)

16 a) The point P in the complex plane represents the complex number 2. Describe the locus of P

17

ara

in each of the following cases:

T

Dl=-2=1 i Hrgt:—2}='T"
On the same disgram of the complex plane, draw each of the loci defined in paris i) and i)
above.
b} 1) The point A in the complex plane represents the complex number w = a + b (where a
g
and b are real), and is such that [w — 2| = 1 and arg(w - 2) = —"-;. Determine the value
of @ and the value of b, giving each answer in an exact form.
i} Write down the value of arg (w), and hence find the least positive integer » for which
arg (w'y > 2.5, IAEB 98)

The complex numbers z; and z; are such that z; = | + @ and z; = ¢ + i, for some integer

i =10

a) Given that w = =, + =, show that lw| = (1 + a)+'2 and write down arg{w), the argument
of w.
Hence find, in terms of &, the value of the complex number w?.

b) In the case when a = 2, the complex numbers 2y and z» are represented in the complex plane
by the points P, and P, respectively.
Determine a cartesian equation of the locus of the point P, which represents the complex
number z, given that |z — 5| = |z — =4

c) In the case when a — 0, the complex numbers =, and =, are represented in the complex plane
by the points Q; and Q, respectively.

Describe fully, and sketch, the locus of the point Q, which represents the complex number =,

- - g |

given that arg (: - :') =X (AEB9T)

21



2 Further trigonometry with calculus

If the triangles were to make a God they would give him three sides.
MONTESQUIEU

General solutions of trigonometric equations

In Introducing Pure Mathematics (page 341), we solved the trigonometric
equation cosfl = % by obtaining the solution of 60° from a calculator and using
the graphs of y =cosfl and y = % to obtain the other solutions. When we have
several solutions to find, this method is very time-consuming and tends to
induce errors.

The usual method of finding more than one solution of such trigonometric
equations is to use the general solution.

General solutions for cosine curves

Y

When cos ! = 4, we will find from the graph of y = cos # (above) that the
solutions for I are

<. =300°, —60°, 60°, 300°, 4207, 6607, TRO°, 10207, 11407, ...

or 360x° £+ 607 for any integer, n.

Hence, the general solution of cos # = cosx is given by
fl =360n"+a forany integer, n
where ¢ and 2 are measured in degrees.
If # and a are measured in radians, this general solution would be

=2nn+n

22



GENERAL SOLUTIONS OF TRIGONOMETRIC EQUATIONS

Example 1 Find the values of ¢ from 0° to 720" for which cosfl = %

SOLUTION

The calculator gives cos ™' (%) as 45°. Hence, the first solution, or z,
is 45°. B

Putting = = 457 into the general solution, # = 360n" £ , we get the
following solutions:

Whenn=0 #0=45

Whenn=1 =315 or405

Whenn=2 0=675

Example 2 Find the values of # from 07 to 360 for which cos 50 = %

SOLUTION

After removing the cos term, we apply the general solution, using different
values of n until we have a full range of solutions.

The calculator gives cos (ﬁ) as 30°. Hence. the first solution, or =,
is 30°, i
In this case, the general solution is an equation in 58. So, with x = 30°, we
have
50 = 360n" + 307
= 0=Tn"£6&
Therefore. the solutions are as follows:
Whenn=0 0=4¢§ Whenn=3 #=210° or 222°
Whenn=1 0=66"or 7§ Whenn=4 0= 282" or 294°
Whenn=2 0=138"or150° Whenn=35 0=7354

SldiEEEEEEEEEEEFEEEFEENEEEEEEEEEEENN

Note We can always check these values on a graphics calculator, after having
selected the correct range or view window.

General solutions for sine curves

y=l

"'mﬂ L] ¥ IEDIt J-ﬂF k. \5‘“]0 1‘-‘“”/} w W
f F F F b I [ \ i
=33 150 300 sioe THF g0

When sin @ = 4, we will find from the graph of y = sin @ (above) that the
solutions for f are

con =330°, <2107, 30°, 1507, 3907, 510°, 7507, ...



CHAPTER 2 FURTHER TRIGONOMETRY WITH CALCULUS

which can be written as
v ey —360° 4 307, 1807 — 307, 30°, 1807 — 307, 3607 + 307, 540° — 307, 7207 + 307, ...
Hence, the general solution of sin f = sin x is given by
6 = 180m° +(—1)"x for any integer, n
where # and a are measured in degrees.
If # and a are measured in radians, this general solution would be
O=nx+(-1)2a

Example 3 Find the values of ) between 0° and 7207 for which sinfl = V3

SOLUTION

V3

The calculator gives sin~' (—_}-) as 60°. Hence, the first solution, or x,
is 60°.
From the general solution, # = 180n" + (—1)"x, we have
0 = 180n° + (—1)"60°
Therefore, the solutions are as follows:
Whenn=0 0=060"
Whenn=1 0=180"-60"=120°
Whenn=2 0=360"+60" = 420°
Whenn =3 = 540" - 60° = 480°
Whenn =4 0= 720"+ 60° = 780°

But @ = 780" is out of the required range. Therefore, there are four
solutions: 1 = 60°, 1207, 4207 and 480°.

Example 4 Find the values of @ between 07 and 360° for which sin 30 = %

The calculator gives sin™' (%) as 45°. Hence, the first solution, or =,
15 457,

In this case, the general solution is an equation in 38, So, with x = 45°, we
have

30 = 1B0n" + (—1)"45°
= 0=60n"+(-1)"15"
Therefore, the solutions are as follows:
Whenn=0 0=15 Whenn=13 0= 165
Whenn=1 0=45 Whenn=4 (=255
Whenn=2 #=135 Whenn=35 =285
That is, there are six solutions: # = 157, 457, 1357, 165", 255" and 285",



EXERCISE 24

General solutions for tangent curves

s B Aoy :
. : : y=1 I.
/. |

When tanff = 1, we will find from the graph of y = tan ¢/ {above) that the
solutions for # are

oo — 1357, 457, 2257, 405,
or 180n" + 43 for any integer, ».
[ Hence. the general solution of tan ! = tanx is given by
= 180" +x for anv integer, n
where ¢ and x are measured in degrees.

If # and x arc measured in radians, this general solution would be

M= nn+

Example 5 Find the values between 07 and 360" for which tan46 = —/3.

SOLUTION

The calculator gives tan~ ' (=v3) as ~60°, Hence, the first solution, or 2,
is —60",

In this case, the general solution 1s an equation in 48 S0, with x = — 60",
we have

il = 180" — 60
= =45" - 15
Therefore, the solutions are 307, 757, 1207, 165°, 2107, 2557, 304", 3457,

EEEEFEENATEEdENdEn i EEE

Exercise 2A

pram - i .., e e g

In Questions 1 to 4 and 8 to 15, {ind the general solution of each equation in a) radians, and
b) degrees. In Questions 5 to 7, find the general solution of each equation in radians only.

1 sinlf.!:L 2 cosfl = —% 3 sinlii=1

V2



CHAPTER 2 FURTHER TRIGONOMETRY WITH CALCULUS

[i

4 tan3f =1 5 5in(2x+ 3) =1 6 ms(lt - g)

l

2
: -] - X . .2 1

7 sn 1t+; = COS 2.1+:l: B sin 4ﬂ=3

9 sin® 30 +cos30+1=10 10 cos20 =cosl — | 11 tanl = 2 cosec 20)
12 sin 50 — sin @ = sin 20 13 3cos*f +cosi20=4 14 2cos 20 = sinfl — |
15 sin 70 +cos30 =0

16 Show that sin 3x = 3sinx — 4sin’x. Find, in radians, the general solution of the equation
sin3x = 2sinx.  (EDEXCEL)

17 Find, in radians in terms of 7, the general solution of the equation cos @ = sin 26
{EDEXCEL)

18 Find the general solution of the equation cos 2x = ms(.r --%) ZIVINE YOUr answer in terms
of m. (EDEXCEL)

19 Given that r = tan x, write down an expression for tan 2v in terms of r. Hence, or otherwise,
find the general solution, in radians, of the equation tan x + tan2x = 0. {AEB 97)

(4n+ )=

20 Show that the general solution of the equation tan (3_1: - g) =tanxis x = . where n

1s an integer. (NICCEA)

Harmonic form
f’is explained on page 374 of Introducing Pure Mathematics, the harmonic form
s

Reos(f£a) or Rsin(0+x)

where R > 0 is a constant.

Turning acos 6+ bsin @ into R cos(f = a) or Rsin(6 * a)

This is used when solving trigonometric equations, when finding the maximum
and minimum of trigonometric expressions, and sometimes when solving
problems in simple harmonic motion, where R is the amplitude of the motion.
o gcos 8+ bsin = Rcos(#— a)
Expanding Rcos(f — x), we obtain

acosfl + bsinf) = Rcosficosa + Rsinfsinx
Equating the coefficients of cos ) gives: a = Rcosa
Equating the coefficients of sinf) gives: b = Rsinx



Therelore, we have

a + b = Rcos'z + R sin'x
= R'(cos’a + sin"z)
= R’

= f= xm

Note that R is always taken to be positive.

To find x, we use

. b
cosa = and sma=—
R

“
R

which give

fanx = —
il

but we need to take care when either a or b i1s negative.

When using acos ! or bsin ), if either @ or b 1s negative, always use

a . ol
cosa = — and sinx = —,
R R

and ensure that both give the same value for x. If they do not, use the value of
z which 1s not between 0 and 90",

Example 6 Turn 3costl = 4sinfl into Rcos(fl - x).

SOLUTION
We have
R=vV@+bPF =V¥id =3
which gives
3 . 4
cosa == sinx = — -
3 5
x = 53.1 1= —-53.1" (from the calculator)

Note —53.1" is also a solution of cosz = 2, but a calculator always gives
the angle between 0 and 90° wherever possible.

Therefore, we use 2 = —53.17, as this 15 the value found from both
COS 2 = ::- and sing = - ;1 which 13 mot between (1 and 90°,

Hence, we get

Jeost —4sinf = Scosi(f + 53.17)

Example 7 Find the general solution of Scosf! — 12sin#f = 6.5, Henee
find the solutions which lic between 0 and 360°,

SOLUTION

Using Scosi! — 12sinfl = Rcos(ff + z), we find
R=v5 4122212

27

HARMONIC FORM
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which gives
5
iz =— = a=074
13

Therefore, we have
Scos# — 12sinf) = [3cos(if + 67.47)
S0, Scostl — 12smn 8 = 6.5 becomes
|3cos(H 4+ 6747) =635

= cos(0+67.4°) = % - 0.5

which gives
U+ 674" = 360n" + 607
Therefore, the general solution is
f=360n =60 - 674

When n = 0, both selutions are negative and are outside the required

range. Therefore, the solutions required are 232.6" and 352.6° (when
n=1).

w asin @+ beos 8= Rsin( 8+ a)
Expanding Rsin (@ + x), we obtain
asinfl + hcosfl = Rsinflcosx + Rcosfisinz
Equating the coefficients of sin @ gives: @ = Rcosa
Eqguating the coeflicients of cos# gives: b = Rsina
Therefore, we again have
R=Va +b

COsSa = q and sinx = E
R R

Example 8 Tuwmn 24siné + 7cosf into Rsindll + x).

EOLUTION
We have

R=V2&¥ 5T =25
which gives

24
z 25 2

Hence, we get
24sinl) 4+ Teostl = 23sin (0 + 16.37)

28
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Note To avoid the problem of possibly obtaining two different values for .
we select whichever one of Reos(ff — z), Rcos(f + z), Rsin{d — =) or
R sin (/< z) contains the sume sign as the expression being simplified.

Thus, we would convert 3sinff — 4cos( into the form Rsin{# — ), which 1s
the only trigonometric formula giving asin/ — bcos 6. In this case, we have

R=V3¥+4=5

L

cosg=— = a=5L1

L

which zive
Isinfl - dcosfl = Ssin(f = 533.1%)

Example 9 For cach of

a)y fix)=24cosd+ Tsinfd b) f{x) =
find

N the range of values for fix) i) a maximum point i) a minimum pomt

I
24 4s5inl —-3cosll

SOLUTION
a) 1) Using 24cos¥ 4+ Tsn ¥ = Reos (i - ), we have
R=v2T5T7i=25
4
Cosa = E = a=163
25
which give
Meost + Tsintl = 25cos(if — 16.37)

Mow, cos f has a maximum of -1 and a minimum of —1. Therefore,
the range of values of cos{i/ — 16.3°) is —1 to -1, which gives the
range of values of 25cos(# — 16.37) as —25 to +25. That is,

-25<fix) <25
i) For the maximum point, we have cos(f# — 16.37) = 1. Therefore,
=163 =0 = #=1613
Hence, the maximum point is (16.3°, 25).
ili) For the minimum point, we have cos (6 — 16.3°) = —|. Therefore,
ff = 163" = 180" =% = 196.3
Hence, the minimum point is (196.37, = 25).
. |
o n ) = S a0~ Soosd

We found in Example 6 that 3cos 8 — 4sinfl = Scos(f + 53.1°).
Therefore, we have

!
2—Scos(f 453,17

fix} =

29
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The denominator has a range from -3 to 7. (Remember that
| =0 = oc.) Therefore, f{x) has a range

fix)y=4 and fix)s -1
ii) The maximum point is found where cos (! + 33.17) is +1. That is.
0+ 53.1°=360° = 0=23069°
Therefore, the maximum point is (306.9°, — 1),
i) The minimum point is found where cos(# + 53.17) is — 1. That is,
B+531°"=180" = 0=1269

Therefore, the minimum point is (126.9°, +).

Exercise 2B

1 Find the value of R and of x in each of the following identities.

a) Scosl + 12sin0l = Rcos(f — 2) b) 3cosfl — 4sinf) = Rcos(f + x)
¢) 3sinfl — dcostl = Rsin(0 - x) d) cos20 + sin20 = Rcos (20 — 2)
e) 6sin 30 + Bcos 30 = Rsin(30 + =)

For each of the following expressions, find

i) the maximum and minimum values
il) the smallest non-negative value of x for which this occurs.

Where necessary, give your answer correct to one decimal place.

. . 4
a) 12¢cosf —9sind b) Beos2i 4+ 6sin 20 c) PP p—
6 o 2 0 3
B+ dsinfl — 2cosll l +3cost! +4sind 8+ 8sinfl + 6cosf
Find the general solution, in degrees, of each of these equations.
a) 3cos@ +4sinfl = 2.5 b) 12cosfl — 5sintl = 6.5 €) cm2ﬂ+sinzfi=%
. 1 : 3 -
_ E——— - L 135 =
d) sin 38 — cos 30 7 e) 2sin6f + 3sin30 = 0

Inverse trigonometric functions

The mverse function sin~

'x, or arcsin x, is defined as the angle whose sine is x.

For example,

w(2)-1 = = ()-

o | A

Hence, if # = sin”~'x, then sin# = x.

ao



INVERSE TRIGONOMETRIC

Sketching inverse trigonometric functions

Inverse sine graph

The graph of ¥ = sin™'x is obtained by reflecting the graph of v = sinx in the

line v = x.

To enable the sketch to be drawn to an acceplable degree of accuracy, we need
to find the gradient of the sine curve al the origin. S0, we differentiate

¥ = sin x, which gives

v
— =C05X
X
At the origin, where x = 0, we have
dy
= cos0 = 1|
dx

So, the gradient of y = sinx at the origin is 1.
We then proceed as follows:

e First, draw the line y = x. Show this as a dashed line.

s Next, carcfully skeich the graph of v = sin x, remembering that y =x 152
tangent 1o v = sin x at the origin.

o Finally, carefully sketch the reflection of ¥ = sin x in the line ¥ = x, to give
the graph shown below.

Tk I
/ ¥ OWoEA
J X r’
¥ -
#
L
#
-
'
”
-
-
-
-,
-
1l p
3 -
- - ¥ = &30
_= iz

3 ) 3 ya
— -

The graphs of other inverse trigonometric functions are found similarky: that
is, by reflecting the graph of the relevant trigonometric function in the line
y = Xx. If the curve of the function passes through the origin, start by finding
its gradient at that point.

ER|
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CHAPTER 2 FURTHER TRIGONOMETRY WITH CALCULUS

Inverse tan graph
Differentiating y = tan x to find the gradient, we get

d = secx
X
At the onigin, where x = 0, we have
s 1
— =500 = ——=
dx cos*()
Thus, the gradient of ¥ = tan x at the origin is 1.

The graphs of y = tanx and y = tan'x (or arctan x) are shown below.

Inverse cosine graph

The graphs of ¥ = cos.x and y = cos™'x (or y = arccos x) are shown below.

i

= K

a2



EXERCISE 2C

Exercise 2C

1 Find the value of each of these inverse functions.

. L | e V3
a) sin 0.3 b) sin '(— 2) €) cos I(_T)

d) tan~'I e) sec 'y2 f) cot '3

2 Sketch the graph of each of these inverse functions.

a) sec 'x b) cosec 'x ¢) cot™'x

"
3 Ifcos 'x = :55 find sin"x.

l +x _
4 Prove that tan "L( - 1) =X tan~'x
l—x 4

5§ Find the general solution of the equation
Jcosf = Tsindl = —6

Give your answer in degrees correct to two decimal places. (NICCEA)
('] Scosxy — 12sinxy = Reos{x + a)

where R > 0 and 2 1s acute and measured in degrees.

a) Find the value of R.
b) Find the value of 2 to one decimal place.
¢) Hence, or otherwise, find the general selution of the equation

Scosx - 12sinx =4 (EDEXCEL)
70 Write i) = Tcosl — 3sinf in the form R cos (! 4+ z), where R is positive and 2 is acute.
i) Find the maximum and mimmum values of ().
iii) Solve Tcosf — 3sinf! = |, giving the general solution in degrees. INICCEA)
8 a) Find all values of x between 0" and 360" sausfving
Jeosxy+ siny = —1
b) Find the general solution of the equation

sin 2y + sindxy = cos 2y + cosdxy IWIEC)

9 Given that
Teosth + 24sinll = Reos(l — x)
where R > 0,0 < a < 907,
a) find the values of the constants R and =
Hence find
b) the general solution of the equation 7cosfl + 24sinfl = 15
¢} the range of the function [[#) where
|

— 0= i1 < 3607 {EDEXCEL)
5+ (Tcosti+ 24 sin iy

(i) =

iz



CHAPTER 2 FURTHER TRIGONOMETAY WITH CALCULUS

10 Find, in degrees, the value of the acute angle x for which
cos — (v/3)sinf = 2cos (0 + )
for all values of .
Solve the equation

cosx—(vI)sinx=+v2 0°<x<360° (EDEXCEL)

11 Express cos @ + +/3sinf in the form Rcos(f — x), where R > 0 and 0° < x < 90",
Hence find the general solution of the equation
cosf + v/3sinfl = 2cos40°

giving your answers in degrees. (AEB 96)

12 The angle x is such that 0 < x < 1;- and Rcos (! + 2) = 84costl — 13sin 8, where R is some
positive real number. }

.a) State the value of R and find =, in radians, correct to three decimal places.
b) Hence determine the general solution, in radians, of the equation

B4cosfl — |3sinl) = 17 (AEB 9%)
13 fix) =Tcosx — 24sinxy

Given that f{x) = Rcos(x + ), where R=2 0,0 < 2 < —, and x and x are measured in radians,

- | =4

a) find R and show that x = 1.29 to two decimal places.
Hence write down

b) the mimimum value of fix)
e) the value of x in the interval 0 < x < 2x which gives this minimum value.
d) Find the smallest two positive values of x for which

Teosx —2Msiny = 10 (EDEXCEL)

14 i) fi) = 9sin® + 12cosf
Given that f{f) = Rsin(0 + z) where R > 0, 0 < z < 90°,

a) find the values of the constants R and =«.
b) Hence find the values of 1, 0 < 8 < 360°, for which

9sinfl + 12cosfl = -7.5
giving your answers to the nearest tenth of a degree.
il) Find, in radians in terms of =, the general solution to the equation
V3sin(f —Lz) =sinf  (EDEXCEL)

a4



INVERSE TRIGONOMETRIC FUNCTIONS

Differentiation of inverse trigonometric functions
sin~'x or arcsin x
If y =sin"'x, thensiny = x.

Differentiating sin y = x, we obtain

dv
cosy— =1
dx
dv _ 1 1 _ 1
dx  cosy ﬁ'.fl_—;n:}: V1-x2
Therelore, we have
.I.—EE_— =sin"'x + ¢
V1 - x2 o
Similarly, if y = sin” '('—T)‘ then siny = X
a a
Differentating. we get
oo
Cosy— = —
Tdx @
dy 1 1
= =¥ _ —
dx  acosy 4 ‘L-"III]' — siny
dv l l
=" _— =

& o Va-x
H\I‘“—(i)

Therefore, we have

d sin '(:E) !
dx i Vi = x?

which gives

j dx sin '(I) o
— = -_ ] -+
val — X i
If v = cos~'x, we can show that
d cos x = -1
dx 7 ViI=$
which gives
j d-l- Crs !T -+
S S x4
i
. . . R
In the diagram on the right, sinfi = x, cos¢ = xand ¢ = —— 0.
- - = L
Therefore, we have 0 = sin”'x and ¢ = cos~'x, giving
S S -1,
SN X = o = C0S -
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CHAPTER 2 FURTHER TRIGONOMETRY WITH CALCULUS

So, we get

where ¢ = = + ¢.

A

Hence, it is unusual to use a function in cos'x in differentiation or in

integration, as it is simply an alternative to sin”'x.

tan~'x or arctan x

If y=tan™" (E), then tany = X
a a

: S X .
Differentiating tan y = =, we obtain
a

2,4y _ 1
'}d.t‘ a
= ﬁ: .I_. = I = = I =
dx asec’y a(l +1an‘y) (.'r)'
all + | =
v
L & _a

dry a4+ x?

Therefore, we have

il;m"(i) =4
dx o @+ X2

which gives
et
F+x a a

d _ |
Note — tan"'x =
dx 1+ 42

Example 10 Differentiate each of the following inverse functions.

e =1f X - —1 an-!f X
a) i) sin (3) ii) sin” dx b) tan (5)
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INVERSE TRIGONOMETRIC

. ) X 1
"] i sl I4.'l.' = i sin ! (%) = ==
dx dx T 'ﬁ'-‘_' — ¥
= —sin 4y = . -
X vl — lbx-
b) Using d t;m"(f) -——-1—“ —, we have
dx i e

: | J 1
Example 11 Evaluate a — dx b —
P I .[:l Vi — 32 ) o v — 3x2
SOLUTION
3 I A\
a) j ——— dx = |sin (—)]
o vd — X! 2 ]

=sin"'l =
Therefore, we have

[orae=

b) For integrals in this form, we always reduce the coefficient of x* to
unity before integrating. Hence, in this case, we have

A
M \,"(4 xd - 1.,-"'3 Ji "Ii _ )
V3

Tz
V(&

e ()
+)

- dx

- X

-

Hence, we obtain

J" 1 d m 73
——dr=—r or —/
o v'd - Ix? 33 Q

FUNCTIONS
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Example 12 Evaluate J
0¥+ X
SOLUTION
Y 1 v\’
I ~dx = —mn"('—)]
09+ x° 3 3 o

T DT
=—tan'l - - tan"'0 = -
Jﬂ- 3Ill-lfl 3

=la

Therefore, we have

3
l 1|:|:¢'=l
09+ x* 12

Example 13 Find l—~—1 dx
16 + 25x*

SOLUTION

Remember Reduce the coefficient of x* to unity before integrating. (See
Example 11.)

Hence, we have

I IJ' [
—_—dy=— | —dx
Jlﬁ+25x~‘ 25116, =

Therefore, we have
I T4
J|ﬁ+:r.5.~.:-*- dy = 35 tan (4 ) e

Example 14 Find J-—-f"‘—
x4 b+ 25
SOLUTIOMN

When it is anticipated that the integral will be an inverse trigonometric
function, we start by using the method of completing the square 1o turn
the quadratic dmmninalqur into the form a(x + b)* + ¢. Then we reduce
the coefficient of (x + b)" to unity so that we can use the standard
integration formula with (x + &) replacing x.

Hence, we have
X4 4+25=(x+3P+16
which gives

" dx ___l dx
xX46x+25 J(x+3) 416

s



INVERSE TRIGONOMETRIC FUNCTIONS

with

The integral we have obtained is now in the same form as ] ey
X-

{x + 3) replacing x and 4 replacing a. Thus, we have

J—dx = L t:m"(—x L 3) +
x+3)+16 4 4

Example 15 Find J S =,
VI =By —4x-

SOLUTION

To convert 11 — 8x — 4x7 into the form aix + !:n]1 + o, it is easier first Lo
factorise out the minus sign, and then take the sign back inside when the
square 15 completed.

Mote The minus sign musi be kept within the square root.

So, factorising out the minus sign, we have

VIl -8y —4x = -,'.f’—[-fl.t: +8x—=11)

i, f-4(x= r2-11)

Then, completing the square, we get

VIT—8x—4x? = VLA{LH 1y - ?]

= /15 = #(x + 1)}
=:1£§—c.r+n:

Substituting this into the given integral, we have

J dx _lJ‘ dx
VII—8x—dx? 2 \/’15 oy
T

which gives

l dx BN ,(2{,t+ 1}) e
V11— 8x — 452 2 V15

a9



CHAPTER 2 FURTHER TRIGONOMETRY WITH CALCULUS

Exercise 2D

1

Differentiate each of the following with respect to x.

a) sin 'Sx b) tan '3x €) sin~ ' d) tan ' 4y
T | -1 X Y | k! - 4
e) sin ' x° tan™' | —— sin” ' 2x h) (3tan'5x
) ] (] n r:,) g ( ) ) )
i) sec”'x ) cot”'x
Find each of the following integrals.
a) dx b) _dx c) J—d ]'-
4 - x? J V9 - x? V25— 4x?
[ dx dx J dx
—_— e
ﬂdv"lﬁ—(}_rl }.9+r'*' g 16 + &3
[ dx [ dx
e — m | —
I'}.25+ll5.ur1 }.'le—livz
Evaluate each of the following definite integrals, giving the exact value of vour answer.
[ 2 3 2 :
a) J' dx b) J" dx i 0 J dx _ d) J' dx :
o VI —x? o 4+ x* o V9 - x? a4+ 3x?
e r dx
~+v1 - 25x?
Evaluate each of the following definite integrals, giving your answer correct to three significant
figures.
Y 2 2
dx ] dx J dx
a S b) | —— ¢ | ——
}]: V4 = 25x ) |4+9_‘L‘: ) 1 3—|:.T—|}3
1 2 1
0 I d.rz e) J dx : 0 J _ dx
o Mx+1)y"+5 o vV20 —8x — x° o 16x* + 20x + 35
. 1
Find the exact value of r—— dx. OCR
Y T

Express 5 + 4x — x* in the form a — (x — b]z, where a and b are positive constants, Hence find
the exact value of

dx (OCR)

: 1
L V5 +4x — &%)

27 + 5 + 1lx+ 13, . .
Express in partial fractions.
P Cc+2+d) P

Show that

1
23 +5x + 1lx+13 (5) | _.(l)
dy=24+In{=)4+—=tan"'[ = OCR
L (x+ D +4) 2) 3 7))  OER
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EXERCISE 2D

8 Given that v = x — /(1 — ¥¥)sin "'x, show that
dy _ _xsin 'x
dx WAl —x°)
Hence, or otherwise, evaluate
23 Zxsin”'(2x)
o (1 —4x)

giving your answer in terms of = and /3. (OCR)

. . d: I
9 Given that z = tan”'x, derive the result i = : -
X + X7

[No credit will be given for merely quoting the result from the List of Formulae.)

Hence express i{tan"{.\;rﬂ in terms of x, y and &y
dx dx
Given that x and y satisfy the equation
tan~'x 4+ tan”'y + tan~(xy) = {ix
d ;
prove that, when x = 1, d_L = -1 -13, {OCR)
X -

. . . dy i
10 ) Given that v = sin~"x, derive the result == = ————
dr (1 =9

[No credit will be given for merely quoting the result from the List of Formulae.)
W) Find ixm - ).
dx
1

iy Using the above results, find J sin” ' xdy. (OCR)

[1]

11 Gaven that x = l show that

}
J+ de = — J_‘._ dy
=1 VI =37)
Find I — L _ax ocw
Ml = 1)

12 OAC is a quadrant of the circle whose equation is
x* 43" = 1. From B, a point on the circumference, a B
perpendicular is dropped to D, a point on the radius
OC, so that the x-coordinate of D 1s r. This is shown
in the figure on the nght. I

i} Show that the area of the sector AOB is | sin 'r.

iy Find the area of the triangle OBD in terms of 1.
i) Hence show that o

I
sin~'r = EJ VI—xldy — /1 = 2
i

]

; )
4y =]
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CHAPTER ? FURTHER THIGONOMETRY WITH CALCULUS

iv) By using integration by parts, show that
X

W x-‘dr:n-*'l—:3+j — dx

']
oyl —&f

vy By using parts # and v, prove thal

sin" 't = (NICCEA)

dx
o'l — xt

42



3 Polar coordinates

Al places are distanie from Heaven alike,
ROBERT BURTON

Position of a point

The position of a point, P, in a plane may be given in terms of its distance
from a fixed point, O, called the pole, and the angle which OP makes with a
fixed line, called the initial line. When the position of a point is given in this
way, we have the polar coordinates of the point.

In the diagram on the right, the cartesian coordinates of yeanis 4
point P would be given as (x, y). o Pix. v}
Its position in polar coordinates would be given as (r, ),
where r( = 0) is the distance of PP from the origin, O, and o
# is the anticlockwise angle which OP makes with the '_
x-axis, which is normally taken as the initial line. o) 3 ' e
{1 is normally measured in radians and its principal value is
taken to be between —x and n. N
Pir. &
F
= Example 1 Plot the point P with coordinates = i —
. nitial line
: b4 . . . T (e-axish
" 4, E and the point Q with coordinates | 2, - 3/
. K
"
L BOLUTION
[ ]
: .. :
s+ @) Draw the line OP at % radians to the x-axis, P
[ ]
. Make OP = 4 units. 4
E Then P is the point identified.
a
i
[
: oy X
L]
Ll
. i
- b} Draw the line OO0 at - ) radians to the x-axis. The
1] =
a . T. ¥ o i
. negative value of the angle means that 3 15 measured 3
- in a clockwise direction from the x-axis. :
> - — ] y
. Make OQ = 2 units. o
- Then Q is the point identified.
L 1§
-
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CHAPTER 3 POLAR COORDINATES

Exercise 3A

Plot the points with the following polar coordinates.

(9 : 23) s (+-9)
« (23 s (+-))

Connection between polar and cartesian coordinates
In the diagram on the right, the point P is (x, ¥) in cartesian
coordinates and (r, ) in polar coordinates.

We see that

x=rcosfl  y=rsind

r=J/xt+)? tand = £

X

If either x or y is negative, we should refer to the position of the point to
determine the value of f.

We can use the above equations o convert the equation of a curve from its
cartesian form to its polar form, or vice versa.

Example 2 Find the polar equation of the curve x* + »* = 2x.

Substituting x = rcosf, y = rsinf into x* + 3* = 2x 'y
(shown on the right), we have 14

reos? + rsin’0 = 2rcosf)

= r*(cos*d + sin’@) = 2rcosf

5 LU 1 2

= r-=2rcost

= r=2cost (sincer#0)

a= I -
Hence, the polar equation of the given curve is r = 2cos#f.
Exercise 3B
1 Find the cartesian equation of each of these curves.
a)r=4 b) rcosfl =3 c) rsinfl =7 d) r = a(l + cosf)

e) r=uall - cos) l]£=l+msﬂ
r
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SKETCHING CURVES GIVEN IN POLAR COORDINATES

2 Find the polar equation of each of these curves.
a) v+ =9 b) xv = 6 c) % +— = d) x4 )F = bx

e) Iy H8r=16 f (¥4 =)

— - an - LR R - . . = ra - O L L ]

Sketching curves given in polar coordinates

The normal way to skeich a curve expressed in polar coordinates 1s to plot
points roughly using simple values of .

Example 3 Skeich r = acos 3.

EOLUTION

Part of a table giving values for r is shown below.

8 0 | it T R R dr | 1ln : 2 : Win | T Sx
| 18 o fy 2 a9 | 3 1% Q &
! _l'__i .ll.‘l_
r o Iﬂu lﬂ' 1] ] lu La a L. dp —a (i
| 2 2 2 2 2 2

2n 2n . .
Note When ¢/ = —é— r=acos| | =-Ja Ierefore, since r must
) - 7
- . 2n
always be positive, the curve does not exist when F = =—,

Similarly, the curve does not exist for any vilue of ¢ between

a i ?.- q H 14 IR L
T and Z, i and =, 2% and m 1= and 15z
B 2 6 6 6 (i 4] i
Plottung the values given in the table and joining the points gives a curve
with three loops or lobes.

. . n n Sm
Notice that the lines # = — # = —and 8 = — "
6 2 f
are all tangents to the loops. The tangents meet at L :_
the origin or pole. All three loops are congruent. Yo ST
=

FEFENSSAEE RSN NN RS EEE EAEENER AN EE e
-
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Example 4 Sketch r = | + 2cost,

SOLUTION

Part of a table giving values for r is shown below.

T i n 2x Zn n n n

(/] 0 - - = — |- - -= | -=] == 0
(3 3 2 3 3 2 3 6

r 3 [1+v3] 2 1 0| 0 1 2 [1++3] 3

To find when r is negative, we solve r = O
1+ 2cosll=0

= cnsﬂ:-J:-

1
We note that 1 + 2cos @ is negative for L P 47“. However. in A-level

examinations only positive values of r are required, which means that, as
far as you are concerned, the curve does not exist for values of #f between

% and igi and should not be shown.

When most models of the graphics calculator display this curve, they
include negative values of r. which you should ignore.
The sketch of r = 1 4+ 2cos f 1s shown below.

The dashed part represents the negative values of r which are commonly
displayed by graphics calculators.

Most polar curves are sketched in the same way.

Here are three tips which will help you to sketch curves given in polar coordinates
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EKETCHING CURVES GIVEN IN POLAR COORDINATES

o Look for any symmetry. 11 r s 2 function of cos @ only, there is symmetry

about the initial line. IF r is a Munction of sin & only, there 1s symmetry about

. i
the line # = 5

e The equations r = asin ) and r = acos ! are circles.

SOLUTION

Muluplving r = gcos ! by r, we gei
r = arcosf!
Xy =X

which gives

(-0

.ﬂ) and radius a.

<%

This is a circle with centre (

¢ When a polar equation contains sec ! or cosec ), it is ofien easier 1o use its

caricsian equation.

Example 6 Sketch r= asectl,
SOLUTION
= asecll = a
cos i

== reosit=a

= X =i

This is the straight line shown on the nght.

Example 7 Sketch r = asec(x — ).

SOLUTION
Transposing terms, we have
roos{e — M =a
which gives
reosfleosa + rsinflsing = o
Replacing rcos # with x and rsin & with y, we get

XCOSY + Vsina = a.

which 1s the straight line shown on the right.

a7

Example 5 Find the cartesian equation of the curve r = acos i,

Substituting ~ = x* 4 and x = rcos @, we have

(PR A=




CHAPTER 3 POLAR COORDINATES

Exercise 3C

1 Sketch each of the curves given in Question 1 of Exercise 3B.
2 Sketch each of the following curves.

a) r=asin2l, 0<f<2n b) r=acosdll, 0< <2n
e)r=24+3cosll, —-na<l<nm dyr=all, 0<l<2n

e) r =4dsecil, _Lepck
) 2 2

Area of a sector of a curve

Let A be the area bounded by the curve r = f{#) and the two radii at x and at 6.
As 1 increases by 40, the increase in area, 64, shown shaded, is given by

1780 < 84 < L(r+dr)’60 (using areas of sectors)

r = fifh)

Dividing throughout by 48, we obtain
oA

J. —_ = 1 -
< aft =3 {r+§r'_l I:1r+ﬁr.E~M|

oA dA

As ) — 0, H — E and dr — 0. Therefore, we have
dA lr:
l:lﬂ 2

Integrating both sides with respect to #, we obtain
J 94 4o -1 j A do

= A =l[r‘dl’]
2

Therefore, the general equation for the area of a sector of a curve is

1 (",
2

T

when the area is bounded by the radii # = 2 and 0 = f.

Example 8 Find the area of one loop of the curve r = acos 30.

SOLUTION

One loop is bounded by the tangent lines @ = % and ! = — E (see page 46).
Therefore, its area, A, is given by

1 (¥ e,
A:-l rdi = A:-J a cos 30d0
2 = 2 3z
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Note

AREA OF A SECTOR OF A CURVYE

Using the double-angle formula to integrate, we have

1L (F
A=—a —(cos 6 + 1)dé
2 52

a® |sin 66 ¥
At

e n =« am
=—|—_—— =
4 (ﬁ {1) 12

So, the area of one loop of r = acos 30 is 5;—:_!5

-

It is often preferable to use only the area in the first quadrant when a

curve is symmetrical in other quadrants. Thus, in Example §, instead of using

2

EEEEEEEEEEERERE RS EEEEEEEEEEN

i

- 0

! 'r a cos 30 d0, we could have used 2 x l_}‘[ﬁ a* cos 36 df.
b 4

Eumple 9 Find the area bounded by the curve r = k! and the lines
== dl‘l.l:l ) =m.

SOLUTION

The curve r = kil is shown for :—r sf<m

The area, 4, required is given hT].' ‘5_1
A= lJ" K6 do
213
[

_ K El K (“_ S

ERE 2\3 24 43
Hence, the area required is Th'x
Example 10 Sketch the curves r = | 4 cosf and r = +/3sin . Find
a) the points where the curves meet
b) the area contained between the curves.
SOLUTION

Y 3 s

Before sketching the two curves, we note that i ..'ir'
o r= | +cosflis similar to 1 + 2cos 0 (page 46)
e r=+/3sinf is similar to r = acosd (page 47).
a) The two curves meet when

| + cosfl = +/Isinf ) i 2 x

Lising
. . [0 0 (0 f
= ——= =2 =t A=t
sintl = sm(z + 1) = -sm(l) COS (2)




CHAPTER 3 POLAR COORDINATES

and

cosfl = Icnsz(g) =1

we express | + cosf = /3sind as

vami() (o
)]

b | =

which gives

Therefore, the curves meet at (%. %) and (0, m)

Remember These are polar coordinates (r, #).

b) To find the area contained between the curves, we draw
the line OP and consider separately the two areas so
formed.

The area shaded in the diagram immediately right is
bounded by the curve r = /3sin# and the two radii

ﬂ:ﬂnndﬂ:%

Hence, this area is %r{ﬁ sin ) dfl,
(1]

The area shaded in the lower diagram on the right is
bounded by the curve = 1 4 cos and the two radii

0=Zand .
Hence, this area is %r{l + cos ) df.
*

Therefore, the area contained between the two curves
is given by

} 3 3
1J [-.r‘asinﬂ:.-dﬂ+-‘-r4;| +cos 0P do
2l 2J)z

"
=lrasin=ﬂdﬂ+lj (1 + 2cos @ + cos*0) do
2 0 2 !
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EXERCISE 30D

[ ] ' n

- -n-irlil—caslﬂldtf+ll I+I’.msﬂ'+l[m52ﬂ+l} el
L} :! il ..'! .2 q. 2

"

- 3 g

. :i[H—lﬁinlﬂj -llzﬂ-.'-ESinﬂ-'-lﬁinEH]

X 4 : n 1 1 '4 ;

L}

L}

: i(z-) .l 5.0

. 413 4 202 6 T8

L}

: _3n_3V3

. 4 4

~ - .3 3

» Therefore, the area contmned within the curves is -f - s—j—r
Exercise 3D

1 Find the area bounded by the curve r = aff and the radii # = g it = n.

2 For ecach of the following curves, lind the area enclosed by one loop.

a) r =acos2i B) r=asin20 g) r=acosdf
3 Find the area enclosed by the curve r = acos .
4 Find the arca enclosed by the curve r = 2 + 3cosil.

5 a) Find the polar equation of the curve {x* + 3°)" = %,
b) Hence, i) sketch the curve, and i) find the area enclosed by the curve.
6 Find where the lollowing two curves intersect.
r=2sinf 0<t<xr
and r=2X1—sinth -n<ll<n
Hence, find the area which is between the two curves.
7 In this question you may use the identity sin 30 = 3sin # — 4sin’f. The cartesian equation of a
curve Cis
(2 + 72+ = 3ap)+4a’ =0

where & > 0.

a) Show that, in terms of polar coordinates (r, ), the
cquation of C is r = asin 30,
b) The curve consists of three equal loops, as shown O, L

in the diagram. The point O 1s the pole, and OL
is the inital line.

Find. in terms of a. the exact value of the arca of one
of these loops, (NEAB)

§1



CHAPTER 3 POLAR COORDINATES

8 a) Sketch the curve with polar equation
r=a(2+costl)y 0<£0<2n
and a is a positive constant.

Mark on your sketch the polar coordinates of the points where the curve meets the
half-lines 6 = 0, =, 0 = % and 0 = 17"

b) Find the area of the region enclosed by this curve. giving your answer in terms of = and a.

(EDEXCEL}
9 The diagram shows a sketch of the loop whose polar equation is
r=2(1 —sin #)/{cos i) —-':Lﬂ'gﬂi %:r
where O is the pole.
0 /——\ Iritasl
11,14
a) Show that the area enclosed by the loop is —I‘E

b) Show that the initial line divides the area enclosed by the loop in the ratio 1:7. (NEAR)




EQUATIONS OF THE TANGENTS TO A CURVYE

Equations of the tangents to a curve

The tangenis to r = acos 3 perpendicular (o the initial line s
are shown on the right.
. . . B
These are at points A, where x is at a maximum. B and
C where x 15 at a minimum, and D, where x has a point
of inflexion.
We note that x = rcos ), Therefore, to find the maxmmum D
and munimum values of x, we find the maximum and the
minimum values of reosi,
Since r = acos 38, we have
C
x = acos3fcosf
which gives

dy
d

= ~3gsin 3cos ) — gcos I sind

. . Lx .
The maximum and the minimum values occur when :j? = (). That is, when

—Yasin 3cosdl — goos 30 sin il = 0

We simplify this expression using the factor formulae:
sin A cos B = %[e‘.in{:-! 4+ B) +sinid ~ H)]
and

cosAsin B = é[ﬁin{.-! + B) = siniAd - B
which give d = ) when
di!

3 . . .
= [sin 46 + sin 20+ % [sin4d —sin20] =0

=  Jsindf +sin20 = 0
Applying the double-angle formula, we get
45in 200 cos 21 + sin 20 = 0
sin 20 dcos 28+ 1) =10
which gives
1

sin2fl =0 or cos2d = -

sin=0 = =0 —=m...

[ -

cusiﬁz—} = f=mm+0912

We have to ensure that the curve exists at these points, For example, when
il = 0.912, cos 30 is negative, thus r is negative and the curve does not exist.

513
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CHAPTER 3 POLAR COORDINATES

Hence, the values of ¢ at the points where the tangent is perpendicular to the
initial line are
t=0ua A f=n-0912atB

f=-r+0912atC f=TaD

So, the equations of the tangents perpendicular to the mitial line are
xX=a
x=0

and

. s 3 |eas 1 L
x = —09858a or uu:r.\,‘['tm ( 4)]

The tangents to r = acos 31 parallel o the initial line are shown below. These
are at the pomts P, Q, R and 8. To find these points, we find the maximum
and minimum values of rsin ! in a similar way 10 that shown above.

i

Qo

\|/

Exercise 3E

1 Find the equation of each tangent to the curve r = acos 30 which is parallel to the nitial line,

2 Find the equation of the tangent to the curve r = ¢ which is

a) parallel 1o the initial line
b) perpendicular to the mitial hine.

3 Give in polar coordinales the points on the curve r = acos 20 where the tangents are

a) parallel 1o the initial line
b) perpendicular to the imtial line.

4 The diagram (top of page 55) shows a square PQRS with sides parallel 10 the axes Ox and Oy.
The square circumscribes a curve € whose cartesian equation is (x° 4+ »*) = xy.
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EXERCISE 23E

a) Show that, in terms of polar coordinates (r, 0), s
the equation of Cis r = 5 sin 20. P Q
b} Find the arca bounded by C.
¢) The coordinates of a variable point on € are (x, v).
1) Show that x = sinf — sin'#.
iy Show that, as 0 varies, the maximum value
of x occurs when sind = % .
W )
i) Caleulate the area of the square PQRS.
INEAB)
5 R
The diagram shows a sketch of the curve € whose polar
equation is
r=v3i-cosl (-m<l<n) 4
The line L touches the curve at A and B, Express in
terms of # the x-coordinate of a general point, P, on R
C and determine the values of @ for which this coordinate ’
has a stationary value,
Deduce that at A, 8 = E “ ’
Show that the area of the region bounded by € and L. o
shown shaded in the diagram, 1s
17V3  7n ¢

6 12 (NEAB)

a) Sketch the curve with polar equation
n
4
Al the distinct points A and B on this curve, the tangents to the curve are parallel to the inttial
line, ## = 0.

n
r=cosl -—-—<iig =

b) Determine the polar coordinates of A and B, giving your answers 1o three significant
figures.  (EDEXCEL)

The figure on the right shows a sketch of the circle
with polar equation r = @ and the cardioid with
polar equation r = afl — cos¥), wherc o is a
positive constant.

a) Verifyv that the curves intersect where ¢ = = :-1

b) Find the area of the shaded region, giving vour
answer in terms of @ and =, {(EDEXCEL)
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CHAPTER 3 POLAR COORDINATES

8 The curves '} and s have polar equations
C,: r=dsin’ 0<0<2n
C:i r=(2V3)sin20 0<h<lin
a) Skeich ) and C; on the same diagram.
b) Find the polar coordinates of all points of intersection of C; and (.

¢) Find, to two decimal places, the area of the region R which is inside both C; and .
(EDEXCEL)

9 Relative to the onigin O as pole and initial line # = 0, find an equation in polar coordinate form
for

a) a circle, centre O and radius 2
b} a line perpendicular to the initial line and passing through the point with polar coordinates

(3,0
€) a straight line through the points with polar coordinates (4,0) and (4. ;) (EDEXCEL)

i mmm mEm LR T N e =
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4 Differential equations

Change and decay o alf around | xee.
H F LYTE

We have already solved first-order differential equations in which the variables
are separable {(sce pages 457-60 1n fniroducing Pure Matlemaiics.)

We will now consider three other main types of differential equation.

First-order equations requiring an integrating factor

This is the other main type of first-order differential equation.
Equations of this type are of the form
dy
—_— 4+ My =
dx v=e
where P and Q are functions of x.
Such an equation can be solved by first multiplying both sides by the

integrating factor ¢/ 74",

Multiplying <" + Py = 0 by efs", we get
X

elra dy | PCJN:... — chi'd.r
dx

Since the lefi-hand side is the differential of ye!#¢*, we therefore have
d .[Fd'l. _ _j-P'nJ 'y
E (_I‘C } = QL
which gives
_I‘L"ihil = .I.'[._J‘I::'““"h dx

The right-hand side is often integrated by parts.

Example 1 1T g—' + 3y = x, find y.
X

SOLUTION
The integrating factor is ¢/ *¢, which is ¢’
Multiplying both sides by ¢'*, we obtain

iy lj V

ig
et —— + ¢ 3y = e
dx :

iy
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CHAPTER 4 DIFFERENTIAL EQUATIONS

= i[_'.'-:3""] = xe*
dx

Integrating by parts, we have

__I"E]x — Jx‘:}r d.'l..'

-I-cj" WX —- J-a!-f:iT dx
3 3

which gives
ir 1 Ix 1 ix
o =—xe ——¢ +
T3 9" T

Muluplying both sides by e**, including ¢, we obtain

1 1 -ix
f=—X ——+ (e
Y=3%75

Note The constant term, ¢, has now become a function of x.

Example 2 Solve the differential equation x j—" —y= X,
x

SOLUTION
Dividing both sides by x to make the first term fii we obtain
X
& __
dy x

The integrating factor is
C'I -[h’:]d.'r - t--lln-r — cll!'l’ 1_
1

Applying the result e™* = u, we have ¢"* " = —.
-'TI.

We now multiply the differential equation by the integrating factor, L1 o
x?

obtain

which we express as
(1)) =
dx \ xt '

= E]' = I.tdx

= LJ_-__-i
¢ 2

+

Multiplying both sides by x*, we obtain the general solution

y=1x4ex

S8



EXERCISE 44

Note To obtain a particular solution, we need to be given a specific point
which lies on the curve. Hence, we can find the value of ¢. This extra fact is
called a boundary condition. Example 3 illustrates such a situation.

Example 3 Solve the differential equation :—' + l_r = x°, given that y = 3
X X
when x = 2.

SOLUTION

The integrating factor is e/ (1/7)4x = gl —

Multiplying the differential equation by the integrating factor, x, we have
dy 1

X—+y=x
X

which we express as

— () =X
i V=X

1
= ay= x4+
When x = 2, y = 3, which gives
b=44¢ = ¢=2

Therefore, the solution is

)
Xy = l.t-' +2 or y= l.'lr'1 +=
4 4 X
Exercise 4A
1 Simplify each of the following.
a) gl v b) etinie 1) ) e-dinx d) eltanxda
'} c[l-‘{t:-l}lit “ l_::'u-nlni.r

In each of Questions 2 to 7, find the general solution.

dy dy dy

2 — 4 3y=nx 3__5_=EIT *__-_4_.:_3
dx 7 dr Foty=x
S x :—1 -y=x % - 1_4;"' =5(x -1y 7 tanx % +y=e"tlanx

8 A curve C in the x—y plane passes through the point (1,0). At any point (x, y) on C,
dy

——4y=e"
dx
a) Find the general solution of this differential equation.
b) i) Hence find the equation of C, giving your answer in the form y = {{x).

i) Write down the equation of the asymptote of C. (NEAB)
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10

1"

12

13

14

15

16

17

Find the general solution of the differential equation

_ 3Icy = xe
dx ~

giving y explicitly in terms of x in your answer.

Find also the particular solution for which v = 1 when x = 0. (OCR)
Find the general solution of the differential equation
{cos x) dy + (sin x)y = cosx
dx
expressing v in terms of x. {OCR)

Find the general solution of the differential equation

dy
X—=4+4y=x
dx
giving v explicitly in terms of x in vour answer.

Find also the particular solution for which v = | when x = L. (OCK)

Find, in the form y = f{x}, the general solution of the differential equation

ﬂ+ i_].' =fHx—-5 x=0 (EDEXCEL)
de =«

A car moves from rest along a straight road. Afler ¢ seconds the velocity is v metres per
second. The motion is modelled by

dv
— oy = &
de
where x and f are positive constants.
iy Find vin terms of 2, § and 1.
ii} Show that, as long as the above model applies, the car does not come to rest. {OCR)
The variables v and ¢ are related by the differential equation
dv _
_:.]_;' =20 f%ﬁl‘tﬂ.ﬂf-t]ﬁ-f:l
Given that v = 1 when £ =0, find v when + = 2. (OCR)

) Find the general solution of the differential equation

d .
L yianx = cosx
dx

iiy If ¥ =2 when x = 0, find the particular solution, (NICCEA)

Criven that
dy 3 o
—— 4+ (Zx 4 1y=12xe """
dx { )
and that y = 5 when x =0, find ¥ in terms of x. (OCR)

The number, N, of animals of & certain species al time 7 years increases at a rate of AN per vear
by births, but decreases at a rate of pr per vear by deaths, where 4 and u are positive constants.



SECOND-ORDER DIFFERENTIAL EQUATIONS

Modelled as continuous variables, N and r are related by the differential equation
II‘I .
L = 4N —
dr

Given that N = N, when r =0, find & in terms of ¢, 2, g and M. iOCR)

18 i) Find the general solution of the differential equation
dy
S = k(x + v)
dl‘- X ¥

where & is a constant, giving your answer in the form y = f(x).
i} The gradient at any point P(x, ) of a curve is proportional to the sum of the coordinates of
P. The curve passes through the point (1, —2) and its gradient at (1, =2) 15 —4.
a) Find the equation of the curve.
b) Show that the line ¥y = —x — 4 is an asymptote to the curve. (OCR)

19 i) Show that the appropriate integrating factor for

E + (2eotxhy = fix}
dx

is sinx.
iy Henee find the general solution of the differential equation

. dy
Slnx¥ —— <4 2yCcosy = Ccosx {NICCEA)
X

20 Find the general solution of the differential equation
3 d.‘i‘
4+ —=1
ds
Guwven that v = 0 when 1 = 2, express s in terms of 1. (EDEXCEL)

21 a) Find the general solution of the differential equation

X -y =xe "
dy -
giving your answer in the form v = fix).
b) i} Verify that the graphs of all solutions of the differential equation pass through the origin

0O, and find the particular solution which is such that j—" =~]at ),
X
i) For this particular solution, state the limiting value of y as x — . INEAB)

e a — P - - e —r——————

Second-order differential equations

1

. . . N d-y
An equation is termed second order when 1t contains the second derivative, ——,
xd

Initially, we will consider equations of the form

i i¥+ﬁ£+¢'l'=u
dal dx '

where a. b and ¢ are constanis.
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CHAPTER 4 DIFFERENTIAL EQUATIONS

To solve the equation ai{ +b d:] + ¢y = 0, we make the substitution
x? x

y = Ae™. Hence, we have

% = nAe™  and :I;{ = i’ Ae™
which give

an* Ae™ + bnde™ + cAe™ =0
That is,

an +bn+c=0

This quadratic equation is called the auxiliary equation.

The solution of a second-order differential equation depends on the type of
solution which satisfies its auxiliary equation. There are three types of solution
of a quadratic equation:

1 Two real and different roots
2 Two real and equal roots.
3 Two complex roots.

Type 1 solution.

The auxi]iary equation has two real, different roots, n; and n,. So, the solution

g;+ﬁd: +ey=0is

v___A:lht_i‘_&':l'

of a

where 4 and B are arbitrary constants.

To verify that this is the full solution, we need to confirm that the following
two conditions obtain:

e There are two arbitrary constants, as it is a second-order differential

equation.
» The solution does satisfy the equation
ﬂ &y, dy
—=+bh—=4ecy=0
ut.*l‘rz dx e

We notice that there are indeed the two required arbitrary constants.

To prove that the solution, y = Ae™* + Be™", satisfies the differential equation,
we substitute it and its derivatives in the LHS of

(&, dy
h =0
r.l'r* — dv +cy
which gives
t.dl} + b g‘} + ¢y = a(m Ae™* + niﬂe"”} + b{ny Ae™" + ny Be™") + c{Ae™" 4+ Be™")
x2 '

= Ae"*(an; + bmy + ¢) + Be™*(an3 + bny + ¢)
=10

since n; and n, are roots of the equation an® + bn+ ¢ =0,



SECOND-ORDER DIFFERENTIAL EQUATIONS

To find the values of 4 and B, we need two boundary conditions. Usually, these
are either

o the values of v at two different values of x, or

. Lde
o the value of y and that of —- for one value of x.
X

d—1 . 3y =0, given that x = 0 when
dx?  dx

v =2 and v 1s finite as x tends to infinity.

Example 4 Find y when 2

BOLUTION

Substituting v = Ae¢™ and its derivatives in 2 g—' — j—l — 3y =10, we gat
& i X

M e-n—-3=0

= (2n-=3n+1)=10

= = and =1

bk | Sl

Therefore, we have
y= Aet & e
When x = 0, y = 2, which gives
2=A+B

We know ihat as x tends to infinity, y is finite. Therefore, 4 = 0 because
the himit of e™* as x tends to infinity s not finite.

Henee, B = 2, which gives y = 27",

Type 2 solution

The auxiliary equation has two real, equal roots, . In this case, we cannol, as
in Type 1, use just v = Ae™ + Be™, since this simplifies 1o v = {4 + 8)e" or
y = Ce", which has only one arbitrary constant. The solution 15, therelore,

¥ =A{Ad-+ Bx)l"
To prove this is the solution, we must show that it satisfies the eguation

dv dv
—— 4+ h—=4y=0
il ;] " 5 d_\' L _!

Differentiating y = {4 + Bxje™ twice, we get

ﬁ = fe™ 4 ne"'A4 4 Bx)
dx
d: v nt 1 B
F = Bne™ +me™A + Bx)+ e B
X

= (A + Bx)e™ + 2nBe™
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.
-

Substituting these in the LHS of a % +b % +¢y =0, we have
= X

2 ¥ ¥
% +b :—l + ey = aln’ (A + Bx)e™ + nBe™] + b{Be™ + ne™ (A + Bx)] + (A + Bx)e™
x2 X

a

= (A + BxX}"(an® + bn + ¢) + (2na + b)Be™
Since # is a root of an® + bn + ¢ = 0, the first term is zero.

b+ VH —dar

. When i1s roots are
2a

Consider now the quadratic formula, n =

coincident, * — 4ac = 0. Therefore, we have

b
n=—-— = 2na+b=10
2a

So, the second term is also zero.

97 1+ 59 4 ¢y does equal zero, and y = (4 + Bx)e™ is indeed the
dx? dx
required solution.

Hence, a

dE ¥

dy
e

Example 5 Solve 62X + 9y =10.
dx

SOLUTION

Substituting y = A¢™ and its derivatives in ~d;1l; +6 g‘—‘- + 9y =0, we get
¥ X

nw+6n+9=0
= (n+3)n+3)=0

= n=-3
Therefore, the general solution 1s
y=(A+ Bx)e™

Type 3 solution

The auxiliary equation has two complex roots, i, = ins.
d’y , dy .
2+bLiey=0is

Therefore, the solution of @ —
: X

X

y = Aeim+imlx | Beim -ins)x
= e"¥(Ael™* 4 Be~iu¥)
= e"*[A cos nyx + id sinnyx + Beos(—nyx) + 18 sin(—nyx))
=" (Acosn,x + id sinnsx + Beosnx — iBsinn,x)
= e"*[(A + B)cosmx + i(A — B)sinnyx]

Since A and B are arbitrary constants, we can combine (A + B) to give an
arbitrary constant C, and we can combine i(4 — B) to give an arbitrary
constant . So, we have

y=e""(Ccosnyx + Dsinn;x)
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EXERCISE 4B

Example 6 Solve E:-'- -2 dy + 3y =0, given that y = 0 and R 6,
dx? dx dx

when x = 0.

SOLUTION s d

Substituting y = Ae™ and its derivatives in % -2 d—i + 3y =0, we get

P=-2m+3=0

2

= n

Therefore, the general solution is
¥ = e*(Ccos v2x + Dsin v2x)
To find C and D, we use the boundary conditions.
When x = 0, y = 0, which gives
0=Ccos0+ Dsin) = C=0
Hence, we have
v = De*sin v2x

As one boundary condition is given in terms of dy . we differentiate the above:

x
?E:' = De"sin v2x + vV2De" cos v2x

When x = 0, % = 6, which gives

X
6= Dsin0+ v2Dcos0
= 6=+2D = D=3}/2

Therefore, the solution is v = 3v/2e" sin v2x.

Alternative notation for derivatives

Sometimes it is more convenient to denote % by vy’ or [, and :Y} by " or ",

where ¥ = fi{x).

Exercise 4B

In Questions 1 to 12, find the general solution of each differential equation.

‘3%_*_4%_?}.:(} 5?"?—?%—3:::[! E%-11$+Zﬁx=ﬂ
7 %+4%+{r:ﬂ 8 %—ﬁ%+'ﬂ'=ﬂ 9 ::'f+§£+.“=
10 ji!q-q.%-}s_‘-:u 11 i’:—ﬁ%wxﬂ 12 jjf+zﬁr+13r=ﬂ
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Second-order differential equations of the type

LS
d.rz +b cy =1(x)

If v = g{x) 15 the solution of
d*y dv

an - . El — .:. -F— “
“ dx? dx ?
and v = hix) is the solution of
d ¥

i —
dt 4:’1‘]1 ey = f{x)

then we have
¥ = hix} + 2glx)
as the general solution of

d" dy
— = i
dt + d_1.+ﬂ {x)

Proof
Substituting y = h + Ag and its derivatives in the LHS of

dy dy
_+h —
dx? d.t‘+“ fix)

we have
ay’ + by +ev=alh” + Ag") + b{h' + ig") + cth + Ag)
= ah” + bh' + ch + Aag" + by +¢y)
= f{x}
since It is a solution of ah” + bh' + ¢h = f{x), and g is a solution of
ag’' +bg' +eg=0.
Therefore,
v = h{x) + Ag(x)
is the general solution of ay” + by’ + ¢y = fix)

glx) is called the complementary function (CF), and hix) is called the particolar
integral (PI).

The particular solution is obtained by inserting boundary conditions into the
general solution.

Types of particular integral
The particular integral depends on the function i{x).
We will consider three tvpes of fTunction f{x):

& polynomial
e ¢xponential
e trigonometric
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e f{x) is a polynomial of degree »

In this case, the particular integral will also be a polynomial of degree n.

Example 7 By finding a) the complementary function and b) the
particular integral, solve the equation
g% 3% 4x=s
de- dr
SOLUTION

a) For the complementary function, we use

d*. d.
_'::-r-E X 4y =0
dr de
Substituting x = Ae¢™ and its derivatives in the above equation, we get
wein—4=10

= (n+4)n—1y=0
= p=1 or -4
So, the CF is x = A¢' + Be Y.
b) For the particular integral, f{x) is a polynomial of degree U. Hence, we
need consider only x = ¢ for the particular integral.
_— _dix dx
Substituting x = ¢ in -——= 4+ 3 — = 4x = 8, we gel
e £ = e g dr &
—d¢=8 = ¢=-=2
So, the Pl is x = =2,

Therefore, the general solution is x = e’ + Be ¥ — 2,

EEFEEEEEEEEEE RN EAEE R EEEENEREEE TR E NN RN NN EN

. Io " .

» Example 8 Find the solution of j—: + 3 :—1 —dy = 2 4 8x", given that,
. x° X

. wh::n,r=l],_r=l]undﬂ= 1.

. dx

= SOLUTION

L]

E To find the CF, we use

- 1., .

a d—{+3d—-1—4_r=u

- dx? dax

E Substituting ¥ = 4™ and its derivatives in the above equation, we get
a wein-4=0

L]

» = (m+dn-1)=0

E = n=1 or -4

= So, the CFis y = Ae”™ + Be ¥,
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To find the PI, we substitute y = a + bx + cx* and its derivatives in

dy dy 2
—=+3 ——4y=3+8x
dy? ax

which gives

2c 4+ 3(b + 2cx) — Ma + bx + ex?) = 3 + B3
Equating coefficients of x*: —-dc=8 = ¢=-2
Equating coefficients of x: 6c—4b=0 = b=-3
Letting x = 0 in the above equation, we get

2e43bh—-4da=13

== ag=-4

So,the Plis y = =4 = 3x = 2x°.
Therefore, the general solution is

y=Ae"+ Be " —4 - 3x - 2¥?
We now need to find values for 4 and B.
When x = 0, y = 0, which gives

0=A+B-4
= A+B=4 [1]
Differentiating y = de* + Be ™" — 4 — 3x — 2x%, we have
B ge"— 4B —3_ax
dx

Whm:r=[l.%= 1, which gives
l=A-48-3
= A4-4B=4 [1}
From 1] and [2], we get A =4 and B = 0.

Therefore, the general solution is y = de* — 4 — 3x — 27,

o [(x) is an exponential function
Take, for example, the equation
d’y |, dy
— e} e
dx? dx
In this case, f(x) = 3e™. The particular integral will be of the same form: Ce™.
Therefore, the CF is y = Ae* + Be™* (see Example 8).
To find the PI, we substitute y = Ce™* and its derivatives in
d*y dy 1
CF 438 4y =3e™
A T dx °

—dy = je-“



SECOND-ORDER DIFFERENTIAL EQUATIONS

which gives
49Ce™ + 21Ce™ ~ 4Ce’™* = e’
= 66C=3 = C=+
So, the PLis y = 5¢'™.

o €
Therefore, the general solution is v = Ae* + Be " + Bl

e f(x) is a trigonometric function of the form asin nx
Take, for example, f(x) = 4sin 2x. The particular integral will be of the form
Csin2x + Dcos 2x

-

Example 9 Solve d—J +3 qy_ 4y =4sin 2y
dx? dx

SOLUTION
The CF is y = Ae® + Be " (see Example 8).

Caution Suppose we were simply to consider y = Csin 2x as the PL
Because there is only a sin 2x term on the right-hand side, we would

obtain
dy d*y ..
—=2Ccos2x and —= = —4Csinlx
dx da?
. &y Ldy , y
Substituting these in o +3 i 4y = 4sin 2x, we would obtain
x? X

—4Csin2x + 3 % 2Ccos 2x —4Csin 2x = 4sin 2x
which includes only one term in cos 2x (frnm %)

This means that this equation cannot be solved.
Hence, the PI used must contain both sin 2xv and cos 2v terms. That is,
v=Csinlx + Dcos 2y
Differentiating this, we have
y'=2Ccos2x — 2Dsin 2x
y" = —4Csin2x — 4Dcos 2x
d*y dy

Substituting v’ and »" in —= + 3 — — 4y = 4sin 2x, we get
dxt dx

—4Csindx —4Dcos2x + 6Ccos2x — 60sin 2y — 4Csin 2y — 4D cos 2x = 4sin 2x

Equating coefficients of sin2xv: —-8C -6D =4

= —-4C-3D=2 [
Equating coefficients of cos2x: —8D+6C =10

= —4D4+3C=10 2]



CHAPTER 4 DIFFERENTIAL EQUATIDNS

*  Solving the simultaneous equations [1] and[2], we get
[ ]

. C=- 3 and D =- 5

. 25 25

i Therefore, the Pl is

]

. g . f

E _r=——2-§sm2xrrﬁcns2x

= Hence, the general solution is

[ ]

= _ L. 6

. r= Ae” + Be ™ — — sin2x — — cos2x
. i 25 35

&’y dy v dy
Example 10 Solve — — — = 2y = 3¢, given that v = 0 and — = 11
P af dx 5 ) dx
when x =10,

SOLUTION
To find the CF. we use

Substituting y = Ae™ and its derivatives in the above equation, we get
w—-n-2=0
= (r=2Dn+1)=0
= n=2 or -1

So, the CF is y = Ae™ 4 Be "

To find the PI, we let y = Cxe®™.

(Note xe™* is used here because ¢** already forms part of the CF.)
Differentiating v = Cxe®*, we have

Y _ cer 4+ 20k
dx
dl_ll"' rl 2y Ix
3 =2Ce™ + 2Ce™" +4Cxe
Substituting these in d—"; Yy _ 2y = 3e™, we get
dx?  dx

4Ce®™ + 4Cxe?™ — Ce™* — 2Cxe™ — 2Cxe™ = 3¢
(Note The x-terms should cancel at this stage.)

e =3 = C=I
Therefore, the PI is y = xe’*.
Hence, the general solution is y = Ae™ + Be " 4 xe™.

T0
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At this stage, after adding the CF and the PI, we insert the boundary
conditions:

y=0whenx=0 = 0=4+8

%=2de:‘—ﬂe‘+e:‘+lw:‘

-‘-'-—:=l|u.-hcnx=n = H=24-B+1 = 10=24-8
Sinceﬂ=:4+ﬁ. we have

Azm and .El\‘=—E

3 3
The solution is, therefore,

Y = (£+:lr)f:I1r - E-‘.' *
’ 3 3

Example 11 Solve V' — 4y + 4y = 3¢,
SOLUTION

To find the CF, we substitute v = Ae™ and its denvatives in
l:rN' —_ 41].? i 4}1 — I]' which giq.lﬁ

w—dn+4=0
= (R=2)n-2)=0
= n=2 (repeated root)
Therefore, the CF is y = (4 + Bx)e™.

To find the PI, we need to use a term in x“e™, since both e** and xe™
already form terms in the CF. Therefore, we let ¥ = Cx¢*, which gives

y' = 2Cx%™ + 2Cxe**
¥ = 4Cx%e™ + 4Cxe™ + 2Ce™ + 4Cxe™
= 4Cx%e* + BCxe®* + 2Ce**

Substituting these in y" — 4y’ + 4y = 3¢, we have

4Cx e + BCxe™ + 2Ce™ — 4(2Cx"e™ + 2Cxe™™) + 4Cx7e’™ = 3™
(Note The terms in x* and x should cancel at this stage.)

W =3 = C=1
Therefore, the Pl is y = § x7¢*".

Hence, the general solution is y = (A + Bx + 3 x')e™".
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Example 12 Solve y" + 16y = 2cos4x.

SOLUTION

To find the CF, we substitute y = Ae¢"* and its second derivative in
»" 4+ 16y = 0, which gives

w+16=0 = n==4
The CF is, therefore, y = 4 cosdx + Bsindx.

Note that for the PI we need to use terms in xcos4x and xsin4x, since
the CF already contains the terms cos4x and sin 4x. Therefore, the PI is
given by

y=Cxcosdx + Dxsindx
So, we have

y'=Ccosdx — 4Cxsindx + Dsindx + 4Dxcosdx
y" = —4Csindx — 4Csindx — 16Cxcos4x + 4D cosdx + 4Dcosdx — 16D sin4x

Substituting the above in " + 16y = 2cos4x, we get

—8Csindx — 16Cxcosdy 4+ 8Dcosdx — 16Dxsindx + 16Cxcosdy +
+16Dxsindy = 2cosdx

Simphiying, equating sin and cos terms, and remembering that the terms
in x should cancel, we find

C=0 and D=1
Therefore, the Pl is y = § xsin4x.
Hence, the solution is

y= Asindx + Beosdx + i sin dx

Exercise 4C
In Questions 1 to 12, find the general solution of each differential equation.
d? d’y dy d*y 3 dy dy s
1 + 7 ——8y=16x 2 — +4 +3 4o " 325Y _ 38Y 5. 104
0 ol ad dx y = o e Sv=10x"+1
d &'y J . d’x dx " d’s ds
43 +2 =4smns5x § ——-4—-5x=13¢ — -8 = =
dx? =¥ 12X ar dr X ] ar T + 1535 = Scos 2y
d* dy  dy - &’y dy 3 d’y dy
7 +5—+4y=2" B —=-—6—+9y=5" 9 —-2—4+3=22
dx? dx 4 dx? dx dx? dx d et
¢ a@ v 4 d’x dx d’x
10 +ﬁ +lﬂ =3 1N -2 —4x=4 1 X =
d dx ¥ a2 dr + 2 in + lox = Icosdr
13 Solve the differential equation
dx . dx
=0
dr? dr

v m—3and % — Iwhent=0. (NICCEA)

T2



EXERCISE 4C

14 a) Find the general solution of the differential equation

d:I' %
—— — 4y = 10"
da? }

b) Hence find the solution for which v = ~2 at x = 0, and % = —Hatx=1(0 {EDEXCEL)

15 Find the general solution of the equation %—L = ¢™ +cos 1x.

State what extra information would be needed to enable a particular solution to be obtained.
{(NEABSMP 16-19)

16 i) Find the solution of the differential equation

a3 =g
dx- dx

for which y =4 and dy =latx=0
X

iy Given that

dy f 3 .
05§ —=— — 2_1' siny =cos x+siny < y< -lrﬂ
X N

and that y = l at x = {n, find the value of y at x = ;7. (EDEXCEL)
_ : . : &y, dy .
17 Find the general solution of the differentinl equation g—-"- -4 c_il 4+ 3y = sin 2x. (EDEXCEL)
x* X

Ll

. . . odx . .
18 i) Solve the differential equation i + 16x = 0 10 find its general solution.
r—

iy If x=3and {':1—‘ = —8 when ¢ = 0. show that the particular solution of the differential
t
equation above is
x = 3cosdr — Zsinds

lii) By writing the particular solution as Rcos{4s + x). find the first positive value of 1 for
which x is maximum. (NICCEA}

18 Obtain the solution of the differential equation

d*x dx
M —4+4—+x=2+11
de? dr
given that, when =0, x = 3 and Ei,ll = 2.8, Show that x == 2r + 3 for large positive 1. (OCR)
e

20 Find the general solution of the differential equation

*x x _ .
1_}4_59_.+4,1,,—:1;,,;.;,,-,3;_5,1"3, (OCR)
dr di
21 Find the general solution of the differential equation
dy _39¥ 4 - s0sin2x
dx- dx
Given that v = 0 when x = 0 and that ¢ remains finite as ¥ — oc, find v in terms of x. (OCR}
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22 i) Find the general solution of the differential equation

-
d ——4 Y L a9 = 16cos 2+ S0sin 2
de dr

liy If x =13 and %} = 10 when r = 0, find the particular solution. (NICCEA)

. dy . . .
23 a) Solve the equation & xy xyv. You do not need to make v the subject of vour solution.
X

b) Find the complementary function and a particular integral for the equation

dy 4
——Jy=2x+e"
dy
Hence write down the general solution of the equation. (NEAB/SMP 16-19)

24 a) Find the general selution of the differential equation

d*y dy
— 44— 13y =0
dx? dx ’
b) Given that y = acos 3x + bsin 3x is a particular integral of the differential equation
%+ #% + 13y = 6cos Jx — Bsin iy
find the values of @ and b.
¢) Show that this particular integral has maximum and minimum values m‘"—-4— and —
respectively.
d) Find the solution of the differential equation
d-{ +4 a, 13y = 6¢os I — 8sin dx
dx? dx )

for which y = 0 and g-l =0atx =0, (EDEXCEL)
X

25 a) Find the general solution of the differential equation
d'y _2 dy

2
dx? dx

—~dy=8sinx - 9cosx

b) Hence find the solution for which v = 0 at x = 0 and :—' = 11 at x = (. {EDEXCEL)
nY

26 The value of the stock held by a large business organisation r vears after 1st January 1998 is
{10 + x) milion dollars. The variation of x, which may be regarded as a continuous variable, is
modelled by the differential equation

48X g4 L se - dcost~ 16sing
ds d¢

I} Find the general solution for x in terms of 1.
i} Given that x = | and —f':l—"' = 3 when ¢ = 0, find, correct to four significant figures, the

i
predicted value of the stock held on 1st January 2000, (OCR)
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SOLUTION OF DIFFERENTIAL EQUATIONS BY SUBSTITUTION

27 Find the values of the constants p and ¢ for which » = pxsin 2x + gxcos 2x is a particular

integral of the differential equation
d'y
da®

Find the general solution of this differential equation.

+dy = sin 2x

Show that when x = nn, where n is a large positive integer, ¥ = — . whatever the initial

conditions. and find a corresponding approximation for v when x = (n + 4 jx. (DCR)

28 Given that x = Are ™’ satisfies the differential equation
d*x dx _
+2—=4+x=e

e T de
a) find the value of A.

b) Hence find the solution of the differential equation for which x = | and dx =fatr=10
i

c) Use your solution to prove that for r 2 0, x < 1. (EDEXCEL)

Solution of differential equations by substitution

We can now solve the following three types of differential equation:

o First order in which variables are separable.

& First order requiring an integrating factor.

e Second order of the form ay” + by’ + ¢v = f{x), where a, b and ¢ are
constants.

Substitutions can be used to make a differential equation, which is one of these

three types, more manageable.

For example, 1o solve
(m + SkM) + 1 %ﬂ = (m + SkM)’
!

we would make the substitution p = m + 5kM, which changes this equation
into

. d_ﬂ 1
- r — — =
r dr r
In this form, the equation looks less daunting and is easier to solve.
Substitutions can also be used to convert a more difficult form of differential

equation to one of the above three types. (In an A-level examination, these
kinds of substitution will normally be given.)

Two such substitutions which you will meet frequently are ¥ = ux and x = ¢,
where o ts a function of x. Their application is shown respectively in Examples
13 and 14.
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CHAPTER 4 DIFFERENTIAL EQUATIONS

Example 13 Solve x° :—J = 4x* + xy + ), given that when x = 1, y = 2.
X

SOLUTION

Notice that in this equation the power of each term, treating x and y as
the same, is 2.

Such equations are called homogeneous equations, for which the usual
substitution is y = ux.

Differentiating y = wx with respect to x, we have

ﬁ = d_" X + u
dx  dx
. = d}' 5 » d_'l-' 3 o 5 )
Substituting for e and for v in x° A =4x" + xy+°, we get
X X

P(x 2 ) = 4t i

dx

Dividing through by x* and rearranging the terms, we have
du

x—=4+1
de 1

el b
L T X

which gives (see page 36)

= y= ltmn(f + Elnx)

Example 14 Solve x* :i - 2x :—" — 10y = 0 using the substitution
X= X
x=e"
SOLUTION X .
dy Cdy dy . dy
We need to replace — by a term in ==, and — by a term in —.
PR du e dur

So, first we differentiate x = e* with respect to u, which gives ? = a".
I
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EXERCISE 4D

Usin dy Sy g we get
5 dy  du dx’ ge
dy 1 dy

dx e* du

dy _udy

= _——= —t

dx du

We now differentiate this equation with respect to x, noting that the RHS
is differentiated as a product and using

4 (d) 8 () dn oy da
dy \de du \du/ dx  du® dx

Hence, we arrive at

ﬁ—_c_"ﬂﬂ.bc'"ﬁﬂ
dy? dx du di dx

. d Y
Since — = ¢~ . we therefore have

X
d'y n dy s, &y
e — e " —=
dx- du du
L dy d*v . 5 dy dy
Substituting for —and — in x* — = 2xr — =y =0, w 1
§ dx dx? da? * dx 4 - B
. % d‘l 3 d:I' - dr
Tl — e —= ]| =™ = =10y =10
¢ ( ¢ du ¢ du"-) ¢ du d
d*y dy
— 3= _—_10py=0
& du 7

Substituting v = Ae™ and its derivatives in the above equation, we obtain
w—3n—-10=0
= n=35 or =2
Therefore, the general solution is
v=Ae™ + Be~ ™
Using x = ¢“, we have
e =) =x" and e =(e")?=x"?

which give

Exercise 4D

1 Using the substitution y = ux, find the general solution of each of the following.

§ X — '.i [ . . . . .
a) % =2= . 2 b} xy :—i =X+ c) Xy % =x+ f_r = _rJI
dy 1 »
d) 3x = =" — ¥y
) dr J )
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2 Using the substitution p = x + v, find the general solution of
dy _3x+3r+4
dx x+y+1

3 Use the substitution p = 2x + 3y to find the general solution of
dy _dx+6y-5
dx  2x+ 3y +

4 Using the substitution x = e*, find the general solution of

. dy dy , d°y dy
+2x——-2y=0 X —=6y=0
" x dy? dx dx? dx
y dy dy ., _ » dy dy
€) x Ez——j-x-d-}-l--”-}— ﬂ].r d_t‘+lta-r1.—|]

§ Given that x = 1%, x > 0, r > 0, and v is a function of x, find :_—‘ In terms nf% and ¢.
X
. d:_] d*y dy
A that — =41 — +2
ssUmimng | lil. T, 3 dn’

differential equation

dy (&r . l) D ety =dde®

. show that the substitution x = ¢*, transforms the

dx? x/ dx
into the differential equation
d' dy

+3=—dy=e"
dr dr

Hence find the general solution of [1], giving y in terms of x. {EDEXCEL)

6 a) Find the general solution of the equation

d:' -
dx
b) Make the substitution y = x= in the equation
'cE+{r— Iy = xle’
dx

Hence write down the solution of this equation. {NEAB/SMP 16-19)

7 &) Show that the substitution v = xy transforms the differential equation

2
x%——;+"{l+2x]—+4tl-x]r—32e x#£0
into the differential equation
d dl- x
-:11:1 +4 a—rﬂh = 32
b) Given that v = ge’™, where a is a constant, is a particular integral of this transformed

equation, find a.

Ta



EXERCISE 4D

¢) Find the solution of the differential equation

o429 Y4 4wy = 2267
da? dx

for which v = 2¢ and 4 _ 0atx=1.
dx

d) Determine whether or not this solution remains finite as ¥ — =, {EDEXCEL)

The variables x and v are functions of ¢, and satisfy the differential equations

dy +2x=y  (*}
dr
E + v =1
dr

By eliminating y, show that
LESNPY . S
dr dr

Find the general solution of this differential equation for x and deduce by substitution in (*)
the general solution for v,

Hence, or otherwise, find x and y in terms of ¢, given that x =1 and v = 0 when 1 =10
INEAR)

9 a) Find. in the form y = f{x), the general solution of the equation

(v — 1) dy +axv=1 x>1
dx

b) ) Given that y = 2 show that
X
&y 1 d'uw 2 du 2w
dx® xdx? P dx X
i) Hence find the general solution of the differential equation
d’y | 2dy
S + ol re—

- +28y=0 x>0 (EDEXCEL;)
dxs x dx

Ta



5 Determinants

In algebra, 1o mention endy one thing of many, Jacobi casi the theory of determinants
into the simple form now familiar to every student.
E T. BELL

Definition of 2 X 2 and 3 X 3 determinants

The 2 x 2 determinant

‘: E] represents the expression ad — be.
For example, we have

3 4
— _ — 74— 28 = —
7 E| Ix8-4xT7=24-28 4

a b ¢
The 3 x 3 determinant |d ¢ f| represents the expression
g h i
e f d f d e
Wi “i’lg il e

which is
alei — fh) — bldi — fg) + c(dh — eg)

We see that the determinant of a 3 x 3 matrix 1s found by expanding the
mairix along iis first row. In turn, we take each element, or eniry, in the first
row, cover up its column and the first row, and find the determinant of the

2 x 2 matrix which is left. We then combine the three results. Notice the minus
sign for the b-term, which relates to the fact that b is an odd number of places
from the first element, a.

Note It is much easier to learn the method for evaluating a determinant than
to remember its formula.

- 37 8
s Example 1 Evaluate (4 2 5
- 1 9 15
: SOLUTION
||
- 37 8
s
. 4 2 5 =3§ ]55 -?H ]55 +Jat|‘|l o
. 1 9 15
[ |
. = 3(30 — 45) — T(60 — 5) + 8(36 — 2)
E = —45 - 385+ 272
" = —158

]



RULES FOR THE MANIPULATION OF DETERMINANTS

Determinants, unlike matnces, always consist of a square array of clements.
The determinant of the square matrix A is denoted either by 'A! or by det A.
Because determinants are always square, the expansion method just described
can be applied to determinants of any size. Thus to evaluate the determimant of
a 4 » 4 matrix, we first expand it along its top row 1o get an expression
involving four 3 = 3 matrices, remembering 1o alternate the plus and minus
signs. For example,

.

13 4 2 -1 -3 -4 5 -3 -4

5 -1 -3 —4 . ~

v 3 4 7 =1|-3 4 7 1-32 e

< 5

| s 6 I T 1 5 6
§ —1 -4 5 -1 =3

+4)2 -3 7 |-2[2 -3 4|

1 8 6 IR

We then proceed 1o evaluate each 3 » 3 matrix as before.

Rules for the manipulation of determinants

Changing a determinant without changing its value

We can alter the rows and the columns of a determinant in three ways without
changing its value. Two are given below,

Adding any row, or column, to any other row, or column

IF we add the corresponding elements in two rows {or columns), the value of
the deternunant is unaltered. For example, we have

il b ' | a -+ kb 'S |
d ¢ fl=|d+e ¢ f]
g oh i g+h ko

The rule also applies to the subiraciion ol the corresponding elements in two
rows (or columns). So, we have

la b ¢ a b c
d e fl=|ld—-g e~h f—i
g h i g Mt ]
oo
Example 2 Evaluate [0 -1 ~1
4 6 8
SOLUTION

The most efficient way 1o evaluate this determinant 1s to add the second
row to the first row.

Mote If vou cannoi quickly spot this simplification, it is beiter 1o expand
using 2 = 2 determinants, rather than to spend time trying various
possible simplifications,

B1



CHAPTER 5 DETERAMINANTS

s So, we have

: 111 140 1-1 1-1
. 0 =1 =1|=| 0 -1 -1

. 4 6 R 4 f B
1 0 0

. =0 -1 -1

. 4 6 8

L]

||

L |

s Expanding this simplified determinant, we get

n

. 10 0 o

. 0 =1 =1 =l>t| 6 8

- i 6 8

|=IH[—E+6]=—2

Adding any multiple of any row, or column, to any other row, or column

If we add the same multiple of the elements of a column (or row) to the
corresponding elements of another column (or row), the value of the

determinant is unaltered. For example, we have

a b ¢ a+5h b ¢
d e fl=|d+5 ¢ [
g h i g+5h h i
The rule also applies to negative multiples. So, we have
a b ¢ a b C
d e fl=|d-3a e=3b f=3¢
g h i g h i
4 6 B
Example 3 Evaluate (0 | 4
1 3 4

SOLUTION

the first row.

determinants.
So, we have
4 6 8 4-2 6-6 B—-8
01 4|=| 0 | 4 |=
1 3 4 | 3 4
Expanding this simplified determinant, we get
200
0 1 4|=2x ; :‘z—lﬁ
1 3 4

az

This determinant is best simplified by subtracting 2 = the third row from

Again, if you cannot quickly spot this, it is better to expand using 2 x 2

[P —
e e =




RULES FOR THE MANIPULATION OF DETERMINANTS

Two rows or columns can be interchanged by changing the sign of
the determinant

For example, by switching columns | and 2 in the lefi-hand determinanis, we
gel

ta b ¢ b a :ﬁ

|{f e fl==le d [

le R i |h g i
and

200 20

1 4|{==11 O 4

1 3 4 }o1 4

When any two rows or any two columns are equal, the determinant
is zero

Say, for example, the corresponding elements in columns 1 and 3 are equal. as
in the determinant below. If we subtract column 3 from column 1, column 1
becomes a column of zeros. Hence, the value of the determinant must be zero.

4 1 4 o 1 4
2 03 2/=0 3 2(=0
I -5 3 D -5 3
20 0 7 0l
0 1 4 6 4
Example 4 Evaluate | 1 3 4 3 4
14 2 3 3 3
2002 12 2

SOLUTION

Evaluating this determinant by normal expansion would be very time
consuming. However, we notice that columns 3 and 5 are identical, and so
the value of the determinant is 0,

Multiplying any row, or any column, by k, multiplies the value of the
determinant by k

If we multiply all the elements of one row (or column) by k. this is the same as
multiplying the value of the determinant by k. For example. we have

a kb ¢ ta b ¢
d ke fl=kld ¢ [
o kh i g 0o
If we multiply every element in the determinant by &, we obtain
ka kb ke
kd ke Kkf
kg Kh ki



CHAPTER § DETERMINANTS

We can take the factor £ out of each column. Hence, we obiain

|ka kb ke la b ¢
\kd ke kf|=k'd e f
|kg kh ki lg kil

Transpose of a determinant

The transpose of a determinant 1s obtained by reflecting the determinant in its
leading diagonal. (This is the diagonal from the top left corner to the bottom
night corner. It is also known as the principal diagonal }

The value of the transpose of a determinant is the same as the determinant’s
original value. For example. we have

a b e a d g

d e fl=|b ¢ h

g h i c F i
2 8 9l
Example 5 Fvaluale [0 —1 SI
0 4 1

SOLUTION

To simplify the calculation, we replace the given determinant by 1ts

Lranspose:
208 9| |2 0 ﬂ!
0 -1 3[=(8 -1 4
0 4 1 9 3 1
which gives
2 0 0 1 4|
8 —1 4|=2"" TI=2-1-12)=-26
9 3 -

Factorisation of determinants

The easier way to find the factors of a determinant is to use the rules for
manipulating determinants. Rarely, if ever, do we multiply out the determinant
and then factorise the result.

In Example 6, the [actors are obtained by subtracting. in turn, one column
from another. In Example 7. a factor is obtained by first adding all three rows.

- a b ¢
*  Example 6 Factorise (&@ & &
- LIS
. a oo

B4



FACTORISATION OF DETEAMINANTS

SOLUTION

First, we take out the factors a. b and e, which gives

a b ¢ [ B
-J: .I':I"“'I o | = abe| h o0
ﬁ't h'\. {,‘,. r‘: h: {.-I| |-
Mext, we subtract column 1 from column 2, and take out a fourth factor
| | | 1| | 0 1
abcia b ¢ =abcla b-a ¢

|ﬁ? ¥ & a P -a o«

| ] 1
= ghellh — a)| a I ¢

L]

-
a b+a |

Then, we subtract column | from column 3, and complete the
factorisation:
i1 0 0 | 1 0 0
abih —a) a ] c—a | = abclh — a)ic—all a ! 1
& b+a &-a a b+a c+a

= ghelb — a)(c — a)l(c + a) — (b + a)]
= ahelh — alle — ade = H)
= abc{a = b{b = clic - a)

Example 7
la b ¢
a) Factorise |1h ¢ a
le a b

b) Hence. find the factors of a' + & + &' — 3abe.

SOLUTION

a) First, we add rows 2 and 3 to row |, which gives

iu‘ i {'l la+b+¢ a+b+c¢ a+b+c
ih ¢ d|= h r i
j¢ a b | ¢ a b

Mext, we take out the factor (a + & + ¢), which gives

1 1 1
(+h=e)bh ¢ a
e a b

Then, we subtract column | from columns 2 and 3, and complete the
fuctorisation:

I 1 0 0 |
la+hb+ellbd o ui=[a-—.‘:-i—c'}h c—fb a-h
¢ oa b ¢ a-=c bh=v¢

={a+b+ec)le — )b — ) —(a—bla - c)]
=(a+b+elbetac+ab—a — B - F)
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b) Expanding the determinant, we obtain

a b ¢
b ¢ a
¢ a b

= alch — a:} — b(b: - ac) + clab - )

=3abc-a' -bF -2
= —(a® + & + & = 3abe)

Hence, we have
B o

c
a b

a + b+ -3abe= -

2T o~

That is,
@+b +=3abe=~(a+ b+ cNbe+ca+ab-a - =)
=(a+b+cla*+ 8+ = be - ca—ab)

Exercise 5A
1 Find the value of each of these determinants.
3 8 5§ 3 3 3 2 5 1 4 3 1
al9 2 2 by |1 -4 1 e) |6 3 3 |1 =5 2
2 5 1 6 =T 5 g =2 4 =5 =1 9
2 Factonise each of these determinants.
1 a & ip 3qg 3 | & o
a) |l b ¥ b) (2p 29 r e (Il ¥ ¥
1 ¢ ¢ Sp -3¢ 2r I & 3

¥

0 x-y -y
d|x=y x 24247
¥=x ¥ 0

3 Express the determinant

e+a a |
F+b b1
e Tl |

as the product of four linear factors.
Given that no two of a, b and ¢ are equal and that D = 0, find the value of a + b + ¢. (NEAB)

D=

4 Show that

2 2 I
det{ 1 k-1 I
2 1 k+1

has the same value for all values of k. (SQACSYS)

rheberrechilich geschitztes Mater



SOLUTION OF THREE EQUATIONS IN THREE

Solution of three equations in three unknowns

Constder the three equations
x+hy+eoz+d =0
i X + h;l' Stz gl =100
X by oz 4 dy =0
It can be shown by algebraic elimination that their general solution 15 given by

X v z ]

f""| iy H'| | ty £y :.ﬁ ) ||I'-'| ﬂ'|| oy Ir'-‘! (9]
h‘: L3 d: | iy 2 :’f: i h: l‘l;: i h:- i)
1:?.1 ry h::q i L el  uly by iy [VED [ [}

Note the following five important facts:

e The determinant under x does not include any of the x-coefficients.
® The determinant under v does not include any of the p-coefficients.
o The determinant under z does not include any of the z-coefficients.

o The y-fraction and the unit fraction carry a minus sign. (The minus sign
alternates as in the expansion of a determinant.)

o [f one of the determinants is zero, the corresponding unknown is also zero.

For example.

.f'.l| 8 n’| i
if |y e ds =0 thenx =0
by ¢y dy!
From the equations above, we have
!i'|| £y I.il| i i £ E.I': a !‘1| :'f: |
h: i I'JI: ! LU ] d‘: s h_‘ d;'
|i|:|_'| 3 iy | | iy 3 d} il h_'l. d_: |
V- = . o=
iy 'ﬁl (] | : il hl Oy | |t f"] €y
idr B s i |'t|"_l Qs I i h_" 3
(5] I‘r?_'l_ Oy iy Iﬁ.l €y : oy 4’1'.1 L8
i) h; Ty
Hence, these three equations have a unigue solution unless (a: by o[ =10
'y f!_:_ Oy
a; by
Conversely, they do not have a vnique solution if (a; by | =10
sy -I'h 3

&T

UNKNOWMNS



CHAPTER 5 DETERMINANTS

Geometric interpretation of three equations in three unknowns
Each of the equations a,;x + by + c;z +d;, = 0 (i = 1, 2, 3) may be considered
as the equation of a plane in three-dimensional space.

With three planes, there are seven possible configurations.

o The three planes intersect in a single point. In this case,
the three equations have a unigue solution.

® The three planes form a triangular prism. In this case,
there is no point where all three planes intersect.
Hence, the equations are said to be inconsistent,
as they have no solutions.

\/

¢ Two of the planes are parallel and separate, and are
intersected by the third plane. Again, there is no point
where all three planes intersect, and so the equations are
inconsistent in this case, too.

s Two other configurations in which the planes have no common point and
therefore their equations are inconsistent are:

O All three planes are parallel and separate.
© Two of the planes are coincident and the third plane is parallel but
separate.

The two remaining configurations correspond to the three equations having
infinitely many solutions.



SOLUTION OF THREE EQUATIONS IN THREE UNKNOWNS

o The three planes have a common line, giving an
infinite number of points (x, y, z) which satisfy all three
equations. In this case, the equations are said to be
linearly dependent, and the configuration is called a
sheaf of planes or a pencil of planes.

e All three planes coincide, giving an infinite number of points which sausfy
all three equations.

Example 8 How many solutions are there to these three equations?
dx—Ay+6z=2
v+ dz=1
x=2y+4z=0

SOLUTION

First, we find the determinant

a b o 4 —i 6
g4 B o= 2 i
b oo 1 =2 4
=15 i+ ;]”'? e
= 8 + 24) + A(—4) + 6(—2)
= —i"+ 84420
Therefore, there is a unique solution unless
~P4+8.+20=0
= F-8i-20=0
= (a=10){a+2)=0
That is. there is a unique solution unless 2 = 10 or 4 = -2,

If 2 = 10, the equations are

dx - 10y +6-=2 1]
2y + 10z = | 2]
x—=2y+4:=0 (3]

We now use equations [1] and [3] to get the same expression as that on the
left-hand side of equation [2]. Subtracting 4 < equation [3] from equation
{1], we have
=2y=10z=2
= 2y+10z=-2
This contradicts equation [2], and so the equations have no solution.
That is, the three equations are inconsistent.
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If 4 = -2, the equations are
4x+2y+6z=2 [4]
2y —2:= [5]
x=2y+4z=0 [6]

Proceeding as before, we subtract equation [4] from 4 = equation [6],
which gives

~10y + 10z = -2

= y—-2r=-—

This contradicts equation [5], and so the equations have no solution.
That is, the three equations are inconsistent.

Example 8 Solve the equations

2x—-3y+4z=1 1]
3_1‘ —F= 2 [2]
x+2y—4dz=1 3]
SOLUTION
2 -3 4
First, we calculate the determinant |3 —1 0 | and find that its value is
1 2 =4

ZLCT0.

Therefore, there is not a unique solution to the three equations, and so we
cannot use the general formula for the solution of three equations.

Adding equations [1] and (3], we obtain
Ix—y=12
which is equation [2].
Since one equation is a combination of the other two, the equations are
said to be linearly dependent.
We cannot find a unique solution for two equations in three unknowns.

To solve these equations, we let x = 1. Hence, x is no longer an unknown.
We thereby have only two unknowns in these two equations, and so we
can solve them.

Using equation (2], we obtain y = 3¢ — 2. Substituting this in equation [3|,
we gel
dz=14+23r-2)-1
=23

= I=—

4

So, the solution is (.'.3r -2 .“4_ 5).

Each value of the parameter r gives a different point. Since there is only
one parameter, this solution represents a line.



EXERCISE 58

Exercise 5B

1 Express the determinant

a be b+l
b ca ("'.‘ﬂ:
¢ ab a+h,

as the product of four linear factors.
Hence, or otherwise, find the values of a for which the simultancous equations

ax <+ 2y +3z=10
2x+ar+{l+ajz=10
X+ 2dav+(2+a)=
have a solution other than x = y =

Solve the equations when a = —3. (NEAR)

Consider the following system of simultaneous equations

2
¥=y4+2x=06
x+3y—-z=7
X499y —8z=-4

i}y By evaluating an appropriate determinant, show that this system does not have a unigue

solution.
li)y Solve this system of simultaneous equations. INICCEA)

Consider the system of simultaneous equations
Ix+y—-2r=—4
x+p+d=11
Ix—dy - 13z = -4
) Solve this system of equations.
i) Hence show in a sketch how the planes defined by the above equations are arranged so that

the solution is of the form found in part i {NICCEA)

4 Show that the equations
X+ Ay+z=12a
X+y4+iz=2b

AX 4y +idz=2¢

where a, b, ¢ € R, have a unique solution for x, »,

z provided that 2 # | and 4 £ —1.
1. state the condition te be satisfied by o, b and ¢ for the equations to

a} In the case when & =

be consistent.
b) In the case when 4 = —1, show that for the equations to be consistent
a+ec=10

Solve the equations in this case.
Give a geometrical description of the configuration of the three planes represented by the
equations in the cases:

N i=—landa+e=0

i) A=—landa+c#0 (NEAR)
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5 Find the values of &k for which the simultancous equations
kx+2y+:z=0
Jx=22=4
Ix -6k —4z-= 14
do not have a umque solution for x, y and -.
Show that, when k& = -2, the equations are inconsistent, and give a geometrical interpretation

of the situation in this case. (OCR)
6 Show that if @ # 3 then the system of equations
x+Iv+4:=-5
x+3y—z=35a
Ix+By+az=bh
has a unique solution.
Given that @ = 3, find the value of b for which the equations are consistent. {OCR)

7 Given that

1 1 =1
M=|1 2 -k
1 & -1

find det M in terms ol &.
Determine the values of k for which the simultancous equations

Ii

x+y—-:z
X4 2y—kz

XxX—ky—2z2

Ii

1
0
I

have a unigque solution.

I} Solve these equations in the case when & = 2.

i) Show that the equations have no solution when & = 1.
i) Find the general solution when k = -1.

Give a geometrical interpretation of the equations in each of the three cases k =2, &k = | and
k=-—1. (NEAB)

8 a) Express the determinant

1 1 1
D=1a b «¢
RIS R

as the product of four linear factors.
b) Two points, A and B, have coordinates (1, 2, 8) and (1, 3, 27), respectively. A third point, C,

which is distinct from A and B, has coordinates (1, ¢. ). Given that the vectors OA, OB,
OC are linearly dependent, find the value of ¢. (NEAB)
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9} Show that the system of equations

3
x+ay+bzr=a-035

Ix+12v+daz=bh-—3

x+4r+ 122

has a unigue solution provided ¢ #4dand a # 9
ily Find the solution in the case where a = 3 and / = 42,
ili) Show that when a = 9 the equations do not have a solution unless b = 18,
iv) Give a geometrical interpretation of the system in the case where o =% and b = (3.

[(OCR)

10 It is given that

1 -1 2 4
A=|1 p =3] and b=] -5
1 -1 g 13

) Find the determinant of A in terms of p and 4.

il} Hence show that if p # —1 and g # 2 then the system of equations defined by Ax=b has a
unique solution.

ili) Show that if p = —1 then the system does not have a solution unless ¢ has a particular
value, gy, which is 1o be found.

iv) Give a geometrical interpretation of the sysiem in the case where p= -1 and g = g,.
(OCR)
11 Show that the only real value of 2 for which the simultaneous equations
(2+i)x—y+z=0
x—2y—z=0
v ~y—({i—-1jc=0
have a solution other than x = y ==z =015 —1.
Solve the equations in the case when 24 = =1, and interpret vour result
geometrically, (NEAD)

12 Consider the system of equations x, y and z,

gr-+ 94 5z=4
where p and g are real.
Find the values of p and g for which this sysiem has:

I} & unigue solution
il an infinite number of solutions
iii) no solution. (NICCEA)

- r—————— = e T R e e e W e e A P e e el == _—
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6 Vector geometry

The Grear Bear is fooking so geomerrical,
Cne would think that something or ather conld be proved.
CHRISTOPHER FRY

Vector equation of a line

In Introducing Pure Mathematics (page 506), we found the vector equation of a
line, AB.

From this, it follows that the general equation of a line through
the point A and in the direction of b is

r=a+ (b

where a is the position vector of A, and each value of the
parameter ¢ corresponds to a point on the line.

Example 1
a) Find the equation of the line through the point (2, 4, 5) in the direction
-2i + 3j + 8k.

b) Find p and g so that the point (p, 10, g) lies on this line.

SOLUTION

2 -2
a) The equation of the line is r = (4) +:( 3 )
5 8

b) If the point (p, 10, g) lies on the line, then for some 1 we have

(5)-2)- (%)

Considering these coordinates, we have

Forii 2-2r=p (1]
Forj 4+3=10 [2]
Fork: 5+8r=g [3]

From 2], we get 1 = 2.

Substituting 1 = 2 in [1] and [3], we get

EEEEESE S EEEEESNEEEESEEEEESEEEEEEESERENEEEEEEEEEES

p=-=2 and g=2I
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Cartesian equation of a line

To find the three-dimensional cartesian equation of a line which passes

f
through the point {x;. ¥, 2;) in the direction | m ], we use the veclor
cquation n

r=a+ih

Hence, we obtain the vector equation of this line as

()

X
Let the general vector r be (1) . which gives

() () )

Using the i, j, k components, we have

x=x+
y=v+m
s=o+m

Finding r from each ol these equations, we get

X=X V=1 I=1Ij
I = == = =
{ " "

Hence, the three-dimensional cartestan equation of a strmght line which passes
f
through the point {x. .2} 1n the direction | m | 15
]

X=X ¥—-¥ _I-z

{ m I

Example 2 Find the cartesian equation of the line PQ. where P is (2, 1. 7)
and Q is (3, 8, 4).
SOLUTION

Let p and q be the position vectors of P and Q respectively. Then the
direction of the hne PO} s

Pa=q-p= (.’si) ' (%) ’ (—i)

85
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Hence, given that the line passes through P(2, 1, 7). its vector equation is

- (1))

Therefore, its cartesian equation is

x—Ezy—]:z—T
1 7 -3

Note [n Example 2, we could have used Q as the point on the line, in which

case we would have obtained

-0

leading to

I—JSI—3=:—4
I 7 -3

Example 3 For the line through (4, 7, —1) in the direction 2i — 3j — 5k, find
a) iis vector equation

b) iis cartesian equation.

a) The vector equation is

REEE

b) The cartesian equation is
x—4 y—=7_z+1
2 -3 =5
which could be writlen as
x=4 T=y =—=(1+2)
2 35

Example 4 Find the vector equation of the line
x=3 1—-y 2:+7
4 2 5

SOLUTION

We always start by rearranging the cartesian equation in the form

X=X _¥y=n_zI-3
! " n
which in this case gives
x=3 _y-1_2z+

5
4 -2 3

LI
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s Therefore, the vector equation of the line is
. 3 4

L]

. r= | +1]| =2

: -3 §

Note

o The direction of a line is normally expressed in terms of integers. Hence, the
vector equation in Example 4 would be given as

. (j) H(‘})

[.
where 5 = 5 s also a parameter.

e It is neater to use a point on the line with integer coordinates. whereby this
equation could be given as

(4

However, this further manipulation is not required in A-level examinations.

Example 5 Find the angle between the two lines

) . 3 =7
x_3="_'5='-3 and r=| -1 | +r| 4
4 2 -1 -2 3

The required angle is between the directions of the two lines, which are

(3) = ()

Using the scalar product in the form costl =

SOLUTION

l"i

la| |b|

4 -7
2 ). 4
-1 3
V24 (1R X\ J-TR+ 424 3

_-28+8-3_ 23
V21 x 74 V1554

The minus sign indicates that the angle between the two directions is
obtuse. However, the angle between two lines would normally be taken to
be acute. Therefore, the angle between the two lines is

cos ! (i) = 54.3° or 0.95 radians

v 1554

. where @ is the

required angle, we have

cosfl =

LA RRRRR NN RRRRRROURUERORAORENUNRRRERURERERRORNRERDDRN]]

a7
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Note The scalar product of two vectors a and b is defined as
a.b=|a||bjcost

where # is the angle between a and b. (See Introducing Pure Mathematics, pages
502-4, where examples are given of its application.)

Resolved part of a vector

We may consider the vector a to be composed of two
parts: one in the direction of a vector b, and the other
perpendicular to the direction of vector b.

In the diagram on the rnight, we have
OA =0T +TA
The magnitude of OT is the resolved part of vector a in

the direction of vector b. That is,
OT = acost
Using the scalar product a.b = abcos 8, we have

‘—:zacmﬂzﬂT

Therefore, the resolved part of vector a in the direction of vector b is %h.

Note The resolved part is a scalar. The vector OT is
a.bb _(a.b)b
b b B

Example 6 Find the resolved part of the vector of 2i — 3j + 6k in the
direction of 3i + j — Tk.

The resolved part is

2 3
6 -7/ 6-3-42 39

Direction ratios

When one vector is a scalar multiple of another vector, the two vectors are

3 —-13
parallel. For example, vector a = ( 4 ) is parallel to vector b = (—20)

-5 25
since b = —35a.

The direction of a vector is specified by the ratios of the components in the i, j



DIRECTION COSINES

and k directions. These are called the direetion ratios of the vector, and are
normally expressed as integers.

For example, the direction ratios of the vector 28§ — 21j — 14k are 4 : =3 : =2,
Usually, these would be changed to -4 :3: 2.

Note Two lines which do not intersect and are not parallel are said to be skew,

Direction cosines

The angle which vector a makes with the i-axis 1s given by

a . . . :
cos | (—') where « is the magnitude of vector a, and a, 15 the
a

component of a in the i-direction. If 0, is the angle which

-

vector 3 makes with the i-axis, we have

a
cosfl, = =
£r

Likewise for 0, and ., we have

. i i
cosfi. === and cosi.=—
: i a
- iy sz iy
These three values, —, — and —, are known as the direction cosines of
a a i

vector a. They represent another way of specifying the vector's direction.

Example 7 Find the direction cosines of the vector 3i — 4j + 5k, and find
the angle which the vector makes with the z-axs.

SOLUTION
- - . . oy iy -
The direction cosines are given by —, — and —, where &y = 3, 4; = -4,
i a
a: = 5 and @ represents the magnitude of the vector.
3
The magnitude of | —4 | is
5

V3 (—4) 4 5 = VB0 = 5v2
Hence, the direction cosines are respectively

3 A 5

52 5v2 52
If 1 is the angle which the vector makes with the z-axis, we have
S 1
5V W2

Theretore, the angle which the vector makes with the z-axis is %

cosfl =



CHAPTER 6 VECTOR GEOMETRY

Exercise 6A

1

10

Find the vector equation of the line

a) through A(2, —7, 5) in the direction 3i + 4j — Tk
b) through B(4, 8, —6) in the direction —2i + 3j + 6k
c) through P(7, 4, —1) in the direction 2i — j — 3k

d) through Q(=8, 1, =3) in the direction § + 3j — 7k

Find the vector equation of the line through each pair of points.
a) A(4, 8, —-2) and B(l, -3, 4) b) C(—1, 8, 3)and D(2, -3.9)

¢) P(1,7, =2) and B(-3. 4, §) d) R(3, -5, =9)and S(-2. -3, 7)
Find the cartesian equation of each line in Question 1.
Find the vector equation of each of these lines.
a) .\:—3=_r-+-2=:-4 b) x+2=_r—-l=:+3
4 3 =5 5 =7 =2
x+5 2=y 44 Ax=3 y=5 2-:
== = d = =

9 3 2 )3 3 1

Ix=-5_y+2_2-2
s T 3

Find the acute angles between the lines with equations
a) r=3i+4j—-Tk+12i—-j+3k) and r=-2i+T7j+ 2k + n3i+ 55 - 3k)

) (-0

Find the equation of the line AB where:

a) Ais(2. 1.4)and Bis (4, 7, 5).
b) Ais{—1, —4, 3)and Bis (2, §, 4).
c) Ais(4,1, =5)and Bis (3, 2, —6).

Find the resolved part of 3i — j+ 2Kk in the direction 5i + 3j + 4k.
Find the resolved part of 4i + 5j — 2k in the direction j — 7k.

Give for each vector I) its direction ratios and #) its direction cosines.
a) 6i + 12j— 12k b) 3i—4j - 3k
c) 12i + 8j — 20k d) 9i — 18] — 27k

Referred to a fixed origin O, the points P, Q and R have position vectors (2i + j + k), (5§ + 3k)
and (5i — 4j + 2Kk) respectively.

a) Find in the form r = a + tb, an equation of the line PQ.

b) Show that the point § with position vector (4i — 3j — k) lies on PQ.
c) Show that the lines PQ and RS are perpendicular.

d) Find the size of /PQR. giving your answer to 0.1°, (EDEXCEL)

100
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EXERCISE 8A

The lines /, I; and §; are given by
e o r= 100 +j 49K + p(3i + j— 4k)
y+9 _i= 13
2 -3
fvv or=-3-5~4k+ adi+ 3j+ k)
where p and £ are parameters.
a) Show that the point A(4, 1, 1) lies on both /; and f;.

b) Rewrite the equation for & in the form r = a <+ vb, where » 15 a parameter.

¢) Show that /; and & intersect and find the coordinates of B, the point of intersection.

The lines /; and fy intersect at the pomt C(1, =2, =3).

d) Show that AC = BC.

e) Find the size of angle ACB, giving your answer in degrees to the nearest degree.

f) Write down the coordinates of the point D on AB such that CD is perpendicular to AB.
{(EDEXCEL)

.Irj: X=

With respect to a fixed origin O, the lines /; and /s are given by the equations
Le r=(2+3] - 2k)+ A-2i + 4] + k)
fpr=(—6i — 3j+ k) + p(5i+j- 2k)

-

where 4 and u are scalar parameters.

a) Show that /; and [, meet and find the position vector of their point of intersection.
b) Find, to the nearest 0.17, the acute angle between /; and /5. (EDEXCEL)

The line / passes through the points with position vectors i + 2j + 3k and i + 6] relative to an
origin 0.
a)} Find an equation for / in vector form.
The line m has equation r = 3 + 6 + k + Ali — 2§+ 2k).
b) Find the acute angle between [ and mr. giving vour answer to the nearest degree.
{EDEXCEL})

Two lines have veclor equalions
r=(3+2j+Tk)= A4 - j+3k)
and
r=(2+6] = 13K+ p(—=30 + j+ ak)
where £ and p are scalar parameters and @ is a constant.

Given that these two lines intersect, find the position vector of the point of imersection and the
vilue of a. (AER 98)

With respect to an origin O, the posttion vectors of the points L and M are i — j + 3k and
2i — 4j + 2k respectively.
a) Write down the vector LM.

b) Show that |OL| = |[LM].
¢} Find / OLM, giving your answer to the nearest tenth of a degree. (EDEXCEL)

101
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16 Two lines have equations
r=(i+5j+2k)+sli—2j+3k) and r=(-i—j+ 10k)+ 13+ 4j- 5k)

i) Show that the lines meet, and find the point of intersection.
il) Calculate the acute angle between the lines. {OCR)

17 a) Find the angle between the vectors 2i + 3j + 6k and 3i + 4j + 12k, giving your answer in
radians.
b) The vectors a and b are non-zero.
i) Given that a + b is perpendicular to a — b, prove that |a| = |b].
i) Given instead that |a + b] = |a — b|, prove that a and b are perpendicular. (OCR)

18 The two lines

x+11 y+2 z46 x—=6 y-=5 420
= e and = =

4 1 -2 5 4 %
intersect. Find the coordinates of the point of intersection. {OCR)

19 The points A and B have position vectors 7i — 8j + 7k and 4i + 7j + 4k respectively, and O is
the origin.

i) Find, in vector form, an equation for the line passing through A and B.
i) Find the position vector of the point P on the line AB such that OP is perpendicular to AB.
iii) Show that the line r = (8i — 5j + 2k) + A(i — 10j + 4Kk) does not intersect the line AB.

(OCR)

Vector product

The product of two vectors can be formed in two distinct ways. One of these.
the scalar product, we have already met in Introducing Pure Mathematics

(page 502), and in the present book on pages 97 and 98. The other is called the
vector product (or sometimes the cross product).

The vector product of two vectors a and b is denoted by a x b, and is defined as
axb=al|b/sinfn

where # is the angle measured in the anticlockwise sense between a and b, and
n s a unit vector, such that a, b and n (in that order) form a right-handed set
(see the diagram below).

axh
&

Yo
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VECTOR PRODUCT

Some important properties of the vector product

The vector product is not commutative
Since a = b = absinfn, it follows that

b = a=absin{—jn= —ahsint’n
Therefore, we have

axb=-bxa

which 1s known as the anticommuotative rule.

The vector product of parallel vectors is zero

The angle, !, between two parallel vectors, a and b, is 0 or 180", Therefore,
sinfl = 0, which gives

axh=10
0 is called the zere vector. 1t is usually represented by an ordinary zero, 0, as below.
Likewise, a = a = 0, since the angle between a and a is zero. Hence, we have
the following important result:
L ixi=jxj=kxk=0

Remember The scalar product a.a = o',

The vector product of perpendicular vectors k
Considering the unit vectors i and j, we have

Pxj=1x1sn90"n=n
Therelore, L, j. n form a right-handed set.

But. by definition. i, j. k form a right-handed set. Therefore, n = k.
Hence, we have

E ixj=k jxi=-k

Similarly, we have

[ jxk=i kxj=-—i :

k«i=j ixk=—j

We notice (sce diagram on the right) that these vector products are positive I

when the alphabetical order in which i. j and k are taken is clockwise, but

negative when this order is anticlockwise. k i
Remember  For perpendicular vectors a and b, the scalar product a. b = 0. \~——'/

The vector product in compoenent form

Expressing a and b in their component form, we have a = a;i + a;j + a:k and
b = bi + b+j + b1k, Therefore,

a x b= (ai+aj+ ak) x (i + byj + bik)
=i % bl + asf % by + ask = byl + ai % b + g % baj + ask x boj +
+ayl % K 4 asf 2 K + ask x bk
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CHAPTER 8 VECTOR GEOMETRY

= axb=abk-abk+ ﬂ']b|i - H|b!i + aybsi — aybsi
= (ayby — ash)i — (ayby — byay)j + (@ by — azby )k

From the definition of a 3 = 3 determinant on page 80, we obtain

i j K
@ . iy dy. ay

a @ dy| = 1= ]+ k

bl b: b] b:f 'bl lllJ'I hl b! h:

= (@zb; — asba)i — (@b — byay)j + (a1b; — azby )k
We note that the RHS of [1] and [2] are identical. Therefore, we have

i j k
axb=|a a a
by by by

Example 8 Evaluate (2i + 3j — k) = (7i + 4j + 2k).

We use the result

i j k
axb=|a a o
by by by
which gives
2 7 i j Ok
3 4 4 =2 3 =1
-1 2 7 4 2
3 =1 2 =1 2 3
"I-; 2 "j‘? 1["'“‘? 4‘

Therefore, we have

(o

AB and CD,

SOLUTIOMN
First, we find AB and CD:

()33

104

Example 8 Evaluate [AB x CD)|, where A is (6, 3, 0), Bis (3, =7. 1), C is
(3,7, =1)and Dis (4, 5, =3). Hence find the shortest distance between

1]
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AREA OF A TRIANGLE

Then, we find their vector product:

. [ !
ABxCD=|]| -4 ) x| -
| -

which gives
AB x CD = 10i - 5j + 10k
Therefore, we have
AB x CD| = /10 + (=5) + 10° = VT3

[

The line which is the shortest distance between AB and CD is perpendicular
to both AB and CD. So, if P and Q are general points on AB and CD
respectively, and PQ is perpendicular to both AB and CD, we have

P_{j = A(ﬁ . ﬁj}

which gives

BEGABRERE

Hence, we have

2-3r—s5= 10k

-8 -4+ 25 =5k

341+ 2s=10k
Solving these simultaneous equations, we obtain k = 0.4, s = | and
I = —1. Therefore, we have

Shortest distance between AB and CD = 0.4(AB x CD)
=04x15=6

Area of a triangle

Consider the triangle ABC whose sides are a, b and e,
as shown in the diagram. From the definition of the € c
vector product, we have

jax b| = |absin0n|
where (! is the angle between a and b.

However, the angle between a and b is 180° — C, and sin(180° — () = sin C.
Therefore, we obtain

la x b| = |absin (180" — C)n| = |absin Cn|
Since n is a unit vector, |a x b} = absin C. Hence, we have
Area of triangle ABC = labsin C = 1 |a x b|
Similarly, we can show that the area of tnangle ABC 1s given by

lbesindA=1|bxel and lacsinB=1|axc|
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Generally, we have

[ Areaof a triangle = {|axb] or L|bxe| or 1|axc|
- Example 10 Find the area of tnangle PQR where P is (4, 2, 5), Q is
s (3,-1,6)and Ris (1, 4, 2).

. Q
a SOLUTION

L]

s First, we find any two sides (see diagram):

s . | 4 -3

- PR=r-p=|4d4]|-[2]=| 2

- 2 5 -3

L ]

. . 3 4 -1

- PQ=q-p=|-1]|-|2])=]|-3

" 6 5 1

= Then, we find their vector product:

L]

. i § k o
[ § pra—— —

l' PRxPQ=|-3 2 =3

. -1 =3 1

L]

= Wwhich gives

. PR x PQ = —7i + 6j + 11k

: = |PR x PQ| = 49 + 36 + 121 = v206
s  Therefore, we have

= Area of triangle PQR = 1 /206

Equation of a plane

Equation in the form r =a + tb + s¢

The position vector of any point on a plane can be expressed in terms of:

e a, the position vector of a point on the plane, and
e b and ¢, which are two non-parallel vectors in the plane.
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From the diagram, we see that the position vector of a point P on the plane is given by
OF = OA + AR + RP

where AR is parallel to vector b, and RP is parallel to vector ¢.

Hence. AR = th and RP = sc, for some parameters f and s.

The vector equation of a plane through point A is, therefore,
[ r=a-=(b+sc

where b and ¢ are non-parallel vectors in the plane, and 1 and 5 are parameters.

Equation in the formr.n =

Given ns a vector perpendicular to the plane, we have

r.n={a+rh+sch.n

=a.n+th.n+sc.n
Since b and ¢ are perpendicular ton, b.n = ¢.n = 0. Hence, we have

r-n=a.n

Therefore the vector equation of the plane is

[ r.n=qd

where d 1s a constant which determines the position of the plane.
Note

e If nisa unit vector, then d is the perpendicular distance of the plane from
the origin.

* When o has the same sign for two planes, these planes are on the same side
of the origin.

» When o has opposite signs for two planes, these planes are on opposite sides
of the origin.

Cartesian form

In a similar way to finding the cartesian equation of a line, we take r.n = d
and replace r by xi + yj + =k, which gives the equation of a plane as

Let n = ai + bj + ck, then the cartesian equation becomes

X a
yl.lb|=d or ax+byrtdez=d
z ¢
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CHAPTER 8 VECTOR GEOMETRARY

Example 11 Find the equation of the plane through (3, 2, 7) which is
1

perpendicular to the vector (—5 . giving its equation a) in vector form,
B

and b) in cartesian form.

BOLUTION

a} Using r.n = a.n, we have
1 3 |
r.|=5]=2]).] -3
8 7 8

1
Hence, the equation of the plane is r. —5) = 49,
8
b) Replacing r by xi + vj + ok, we gel

(3

Therefore, the cartesian equation is x — 3y + 8z = 49,

Note A plane is identified by

e a vector perpendicular 1o the plane, and
# a point on the plane.

Example 12 Find the unit vector perpendicular to the plane
2x+3y=-Tz=11.

SOLUTION
@
The vectior (h) is perpendicular 1o the plane ax + by + ¢z =

c

e o

Therefore, the vector perpendicular to the given plane s ( : ) :
-7

e —————————

The magnitude of this vector is 1,1"2:' + 34 (=TF = VB2

Now, the unit vector perpendicular to the given plane must be of

magnitude 1. 5
V62
. . . . 3
Therefore, the unit vector perpendicular to the given plane is N5
7
NG
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EQUATION OF A PLANE

Example 13 Find the equation of a plane through A(l, 4, 6), B(2, 7, 5)
and C(-3, 8, 7).

SOLUTION

First, we find two vectors in the plane ABC: for example,

wn (-9
ecr (30

Result 1 To find the equation of the plane in the formr = a + rb + s¢,
we need to identify one point on the plane.

L =J b

Il we choose A(1, 4, 6). the equation of the plane ABC is

()6

e Instead of choosing A, we could have chosen B(2. 7, 5) or C(=3, 8, 7).

1 =1
o Instead of ( 3 ) we could have used (—3) .
-1 1
i} 4
o Insiead of | 4 |, we could have used | =4 |.
l -1

Result 2 To find the equation of the plane in the form r.n = d, we need
to find a vector perpendicular to the plane ABC.

Note

A vector perpendicular to the plane ABC is given by AB H’: O any
similar vector product of two vectors in the plane. (This follows from the
definition of the vector product, page 102.)

Theretore, we have

. l ~4
ABxAC=| 3 | =| 4 | =
-1 I

which gives the vector perpendicular to the plane as 7i + 3j + 16k.

i
i
-4

m Ll See
|

Hence, the vector equation of the plane ARC is

7 2 7
r.l 3] =1T71].1 3 |=14421+E0D
(2)-()-C2)
7
=T, 3 =115
16

Therefore, the cartesian equation is 7x + 3v + 16z = 115
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Example 14 Find the angle between the planes 3x + 4y + 5z = 7T and
x42y—2z=1L
SOLUTION

The angle between the planes is the angle between the vectors
perpendicular to the planes. That is, the angle between the two vectors

() = (2)

Using cosf = --f where 0 is the required angle, we have
¢

mf}_3+8—lﬂ
5v2 x 3
_ 1

= [ =cos '(—-—)=ET.]' correct to 1 d

Example 15 Find where the line from A(2, 7, 4), perpendicular 1o the
plane IT, 3x — 5y + 2z + 2 = 0, meets [I.
SOLUTION

Let T be the point where the line from A(2, 7, 4), perpendicular to the
plane IT, 3x — 5y + 2z + 2 = 0, meets [T.

The equation of AT 1s

2 3
r={T7]+t] =5
4 2
2 3
Hence, T is the point where r = (T) -H(—S) meets [1.

4 2

So, putting x = (2 + 31), ¥y = (7 = 5r) and = = (4 + 2/) into the equation of
the plane I1, we have

2+ -HT-5N+24+20)+2=0
= Br=19 = =4
Therefore, the point T is (34, 44, 5)
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EQUATION OF A PLANE

Example 16 Find the angle between the plane 3x + 4y — 52 = 6 and the

line ~ (;) (;1)

The required angle is 90° — 8, where @ is the angle between Line r
the line and the vector perpendicular to the plane. That is,

SOLUTION

Required angle =

3 l
90" — Angle between ( 4 ) and ( 5 )
-5 -3

Using cosfl = L1 we have
ah

3+ 20415 Iredy-Sz=6
R R
which gives
Required angle = 90° — cos ™' (I_L)
V35 % 52
= 5in"(—33 ) = 65.3° (correct to | dp)
570

Example 17 Find the equation of the plane containing the two lines
3 -1 =2 2
r=|1]+r| 3 and r={ -3 | +s5| —1
2 —4 7 5
The two vectors in the plane are the directions of the two lines, which are

()~ (2)

Therefore, the vector perpendicular to this plane is

SOLUTION

~1 2 i j k
3 x| -1]=|-1 3 —4|=11i-3-5%
—4 h] 2 -1 5

Hence, the equation of the plane is 11lx — 3y - 52 = d.

From the first line, we know that the point (3, 1, 2) is in the plane. So, we
haved=11x3-3x1-5x2=20.

Therefore, the equation of the plane containing the two lines is
llx =3y -5 =20.
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Example 18 Find the equation of the common line (line of intersection)
of the two planes

I, 3x—y-5z=7 and 1), 2x+3y—4z-=-2

SOLUTION

3 2
The vectors | —1 )und( 3 )ﬂﬂ! perpendicular to I1, and I1,
-5 —4
respectively.

3 2
Thercl'ure.(—l) P ( 3 )is perpendicular to both of these

-5 —4
perpendiculars, and hence is in the direction of the common line.

Therefore, the direction of the common line is

i j Kk
3 =1 =5|=1%+2j+11k
2 3 -4

To obtain the equation of the common line, we need to find a point on it.

Solving I1, and IT, will give only two equations to solve for three
unknowns. So, we let x = 0 and solve the equations for the remaining two
unknowns. However, if letting x = 0 causes problems because of the
particular equations given, we may let either y =0 or z = 0.

Iis3x-y-5z= Whenx =0, I, gives —-y-5:=17
Mis2x+3y—4:=-2 Whenx=0,11, gives 3y—dz = -2
Solving these simultaneous equations, we find z = -1, y = = 1.

Therefore, the point (0, —2, —1) lies on the common line, giving its
equation as

-(2)+()

Distance of a plane from the origin

Consider the equation ol a plane in the formr.n = 4.

If m is a unit vector (usually denoted by n), then d is the perpendicular distance
of the plane from the ongin.

Example 19 Find the distance to the plane 3x + 4y — 5z = 21 from the origin.

SOLUTION

The equation of the plane is

3
r. 4 =21
-5
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*  Changing this to the form r.n = d, where n is a unit vector, we get
» 3

- 5'.,-5

. 4 21

: r. ;i =

- LV 5v2

. 5

. 52

- 5

s  Therefore, the distance from the origin is ——.
. 542

Distance of a plane from a point

Example 20 Find the distance from the point (3, =2, 6) to the plane
Ix -4y — 5z = 21

SOLUTION

Method 1 First, we find the equation of the plane parallel 1o

Ix + 4y — 52 = 21 which passes through the point (3, =2, 6). Then we find
the distance of each plane from the origin. The difference between these
distances is equal to the distance of the plane 3x + 4y — 5z = 2] from

{3, -2, 6)

The equation of the plane parallel to 3x + 4y — 3z = 21 through (3, -2, 6)is
x4 dy —5z=(3x3)—(2x4) +(6x -5
= J+dy-5z=-29

Changing this to the form r.n = d, we get

Therefore, the distance from the point (3, =2, 6) to the plane 1s

1 y)
A

5v2 0 52 52

Method 2 Using the form r = a + b, the equation of the line
perpendicular to 3x + 4y — 52 = 21 through (3, =2, 6) is

.._(_})”(_:15)

This line meets the plane 3x + 4y = 3z = 21 when
I+ 30+ 4~ 2+41) — 5(6 - 5r) =21
= =3 = =]

TSR R R ERRTR RN R RN RERERERRERIREREREORANRRRRRORRRRNRNEDERDNDE] )]
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Using r = a + rb again, we see that the line meets the plane at (6, 2, 1).

The distance between the two points (3, =2, 6)and (6, 2, 1) is
VI F ¥ =5/2

Therefore, the distance from the point (3, -2, 6) to the plane is 5v/2.

Exercise 6B

1 Find a % b when

() ()
(3) () )

2 Find, in vector form, the equation of the plane through
a) A4, 1, -5 B{2, —1. —-6), C{-2, 3. 2)
b) P(2. 5, 3), Q(4, 1, =2), R(4, 3, 5)
c) D(4, 1. -3). E(2. 3, 2), F(—1,-3, 1)

3 Find, in cartesian form, the equation of the plane

() i )

4 Fined the angle between each pair of planes.
a) Ix—v—dz=7 x+3y=-z=11
B Sx-3y+:=102x—y-z=8§
€) Ix+dy—-2z=50x+Tv+:=4
dj x -2y —-9:=1, x+3r+2:=0

5§ Find the angle between the line

-

and the plane 2y + 4y -z = 7.
6 Find the angle between the line

)

and the plane 3x = y + 2z = 11,

7 Write the equation of the plane 3x + 4y — 52 = 20 in the form r.n = d, where n is a unit
vector, Hence write down the distance from the plane to the origin.
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EXERCISE &8

The points A, B and C have position vectors a =i+ j+ 2k. b = 3i + 2j + 4k and
¢ = —i+4j — 4K respectively.
a) Wrile down the vectors b — a and ¢ — a, and hence determineg
i} (b—a).{ec—a)}
i) (b—a)x{c—al.
b) Using the results from part a, or otherwise, find

i) the cosine of the acute angle between the line AB and the line AC, giving vour answer in

an exact form

i} the area of triangle ABC, giving your answer in an cxact surd form

iif) a vector equation of the plane through A, B and C, giving your answer in the form
r.n = (AEB 9%)

The plane 1, has vector equation
F=(5i+§) +ul —4i+j+ 3k)+ wj+ 2k)

where n# and v are parameters.

a) Find a vector m; normal 1o 7.

The plane IT, has equation 3x 4+ y -z = 3.

b) Write down a vector n» normal to /1.
¢) Show that 4i + 13j + 25k is normal to both n; and ns.

Given that the point {1, 1, 1) lies on both [, and [I-,
d) write down an equation of the line of intersection of 11, and I1; in the form r = a + ib,

where t is a parameter, (EDEXCEL)
The points A(24, 6, 0), B(30, 12, 12) and C(18, 6, 36) are referred to cartesian axes, origin O.
a) Find a vector equation for the line passing through the points A and B.
The point P lies on the line passing through A and B.
b) Show that CP can be expressed as
b+ ni4 g+ (2r—36)k
where 1 1s a parameter.

¢) Given that CP is perpendicular to AB, find the coordinates of P.
d) Hence. or otherwise, find the area of the triangle ABC, giving vour answer to three
significant figures. (EDEXCEL)

The plane [T passes through the points A(—=2, 3, 3), B(1. =3, 1) and C{4, -6, =7).
a) Find AC » BC.

b) Hence, or otherwise, find the equation of the plane IT in the form r.n = p.
The perpendicular from the point (23, 5, 7) to [T meets the plang at the point F.

¢) Find the coordinates of F. {(EDEXCEL)
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12 The plane p has equation
r=i—j+si+k)+j— k)
and the line [/ has equation
r=(i-2j+k)+ 4i2i —j)

i) Find a vector which is normal to p.
i) Show that the acute angle between p and [ is sin']{lj V15). (OCR)

13 The planes P, and P, have equations
r.(2i—-3j+k)=4 and r.(i+2j+3k) =35

respectively. Find, in the form r.n = d, the equation of the plane which is perpendicular to
both Py and P; and which passes through the point with position vector 3i — j+ 2k. (OCR)

14 The line / passes through the points with position vectors i — 8j + 7k and 7i + 4j + k. Find an
equation of [ in vector form.

The points A, B, C have position vectors 3i + 5j + 8k. 51 + 6j + 7k and 4i + 7j + 5k respectively.

i) Find the vector product AB x AC. Hence or otherwise find the equation of the plane ABC.
ii) Show that the angle between [ and the plane ABC is 24.5°, correct to the nearest 0.1°.
i) Find the position vector of the point of intersection of / and the plane ABC.,  (OCR)

15 The point A has position vector 2§ + 3j + 5k and the line / has equation
r=—5i+6j+3k+i2-2j- k)
i) Find the position vector of the point N on / such that AN is perpendicular to /.

i) Show that the perpendicular distance from A to fis v/26.

The points B and C have position vectors —5i + 6j + 3k and 6i + 13j — Tk respectively, and the
point D is the mid-point of BN,

i) Show that the plane ANC is perpendicular to /.
iv) Find the acute angle between the planes ANC and ACD. (OCR)
16 The line / has equation
r=>5i+8j+k+ni+8k)
and the plane P has equation
x—2y—z=-5=10
Find the position vector of the point at which / and P intersect.

Find also the acute angle between [ and P, giving your answer to the nearest degree, (OCR)

17 Consider the plane P, the line L, and the line L; given by the equations,
P: x+2y=z=35
x=11_ y+2 =48
2 2 s
x=1_ y+42
b =73
) Show that L, and L, are coplanar.

i) Find the equation of the plane, P;, which contains L, and L,.
i) Find the equation of the line of intersection of the planes P, and Ps. (NICCEA)

.L|_.:

]

=T
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18 The points A, B and C have position vectors (j + 2k). (2§ -+ 3j + K) and (i + j + 3k). respectively,
relative 1o the onigin O. The plane IT contains the points A, B and C.

a) Find a vector which is perpendicular 1o IT.

b) Find the area of LA ABC.

c) Find a vector equation of [T in the form r.n = p.

d) Hence, or otherwise, obtain a cartesian equation of I7.
&) Find the distance of the origin O from [].

The peint D has position vector (3i + 4j -+ k). The distance of D from [T 15 ;’I__i'
f) Using this distance, or otherwise, calculate the acute angle between the line AD and I7,
giving your answer in degrees to one decimal place. (EDEXCEL)
19 Given that
axb=i bxc=)] ecxa=Kk
express
{a-+h)x(a+ 2b<+ 3c)
in terms of i, j and k. (NEAR)

i dr+ e A 42 = 12

The figure above represents the line L and the plane P given by

L: r=4i~j+5k+ali—j+2K)

P 3x+2y+d4:=12
) Find the coordinates of B, the point of intersection of the line £ and the plane P.
i) Write down a vector m which is perpendicular to the plane .
iii) Calculate the vector g given by

qg=mnx (i~ j+2Ik)
and mark it on a copy of the figure starting at B.

iv) Using q, or otherwise, find the vector equation of the line BC which is the projection of the
line L on the plane P. (NICCEA)

21 Simplifv
fa+h)x(a-h)
Given that a and b are non-zero vectors and that
fa+hix{a-hy=0
write down the possible values of the angle between a and b, (NEAB)
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-3 2
22 The points A and B have position vectors a = ( 1 ) and b = ( 4 ) respectively, and the
3

—

3

a) Show that B lies in IT and that A does not lie in IT.

b) Write down the vector AB.

¢) The angle between AB and n is 6. Find the value of 0, giving your answer correct to the
nearest (.17 —

d) The point C lies in the plane I7 and is such that AC is perpendicular to I1. Explain why
AC = /n for some scalar parameter 4. By finding the value of 4. or otherwise, determine the

position vector of C.
e) Find the shortest distance of the point A from [7. (AER 96)

4
plane IT has equation r.m = |, where n = (-I ) .

23 The planes [1, and I1, have cartesian equations
x4+2y—2z=T7 and 2x4y+4z=-I|
respectively.
a) Find the cartesian equations of the line of intersection of the planes 11, and [1- in the form
Xx—a_y-b_z-c¢
/ m n

b) Find a cartesian equation of the plane I7; which contains the y-axis and which intersects 7,
and IT, to form a prism. INEAB)

24 With respect to an origin O, the straight lines /; and /5 have equations
h: r=pi-2j+2k+ Aii—k)
L r=3i=j+ pu2i+j-3k)
where 4 and u are scalar parameters and p is a scalar constant. The lines intersect at the
point A,
a) Find the coordinates of A and show that p = 2.
The plane IT passes through A and is perpendicular to /5.

b) Find a cartesian equation of J1.
¢) Find the acute angle between the plane IT and the line /,, giving your answer in degrees to

one decimal place. (EDEXCEL)

25 The point P has coordinates (4, k. 5), where k 15 a constant. The line L has equation

| 1 4 7
r=| 0 | +¢| 2 |.Theline M has equationr= | k | +1| 3 |.
-4 -2 5 -4

1) Show that the shortest distance from the point P to the line L is L /5(k? + 12k + 117).

ii) Find (in terms of k) the shortest distance between lines L and M.

iif) Find the value of k for which the lines L and M intersect.

iv) When & = 12, show that the distances in parts | and i are equal. In this case, find the
equation of the line which is perpendicular to, and intersects, both L and M. IMEL)




EXERCISE 68

26 The planes [T, and I1; have equations
Xx+2y=z=3 and 3x+4dy-:z=1
respectively. Find

iy a vector which is parallel to both 1} and [T+
ii) the equation of the plane which is perpendicular to both 17, and IT; and passes through the
point (3, =4, =35). iINEAR)

27 The lines [, and [y have vector equations
r={(2A-3)i+Aj+(1-Ak and r=(2+5mi+(1+ pj+(3+2uk
respectively, where 4 and p are scalar parameters.

a) Show that /; and /5 intersect. stating the position vector of the point of intersection.

b) The vector i + aj + bk is perpendicular to both lines. Determine the value of the constants
aand b.

¢) Find a cartesian equation of the plane which contains /; and /.. (AEB 98)

28 The lines L, and L, have equations

(30
- (i)

respectively. Find direction ratios of a line which is perpendicular to both L; and L,.
Verify that the plane IT,, through the origin O, whose equation is
x4+ y=2z=0
contains L. Find the equation of the plane I7T; containing O and Ls. Show that the cartesian

equations of the line L in which [, and [T, intersect are

y _Z
r=—==-=

2 4
Explain why L must be the common perpendicular of L; and L;. INEAB)

29 A plane [T contains the points Ail, =2, 1), Bi4, 0, 1) and C{l, 0, 2).
a) i) Calculate the vector n = AB x AC.
il) Explain why n is perpendicular to I1.
i) Express the equation of /1 in the form
r.n=p

where p is a constant.

iv) The plane IT divides three-dimensional space into two regions. Show, with the aid of a
diagram, that the region into which n is directed does not contain the origin.

b) A straight line L passes through the point D(3, —1. 2) and has direction ratios 2: 1 : 1.
i) Write down a vector equation for L and verify that L passes through A.
il) Show that the resolved part of the vector DA in the direction of mis —1.
i) Write down two conclusions that can be drawn from this result about the position of D
with respect to the plane I1. {(NEAB)
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CHAPTER 6 VECTOR GEOMETRY

30 The planes I1, and [T, with equations

N

x+2y+z+2=0 and 2x+3y+2z-1=0
respectively, meet in a line L. The point A has coordinates (2, =2, 1).
a) i) Explain why the vector

()-()

is in the direction of L.
if) Hence find in the form r.n = a the equation of the plane which is perpendicular to L
and contains A.

b) 1) Explain why, for any constant 4, the plane IT; with equation
(x+2¥+24+2)+U2x+3y+22-1)=0

contains L.
i) Hence, or otherwise, find the cartesian equation of the plane which contains L and the
point A. (NEAB)

The plane IT has equation 2x + v + 3z = 21 and the origin is O. The line / passes through the

point P(1, 2, 1) and is perpendicular to 7.

a) Find a vector equation of /.

The line [ meets the plane IT at the point M.

b) Find the coordinates of M.

¢) Find OP x OM.

d) Hence, or otherwise, find the distance from P to the line OM, giving your answer in surd
form.

The point Q is in the reflection of P in 7.

e) Find the coordinates of Q. (EDEXCEL)

With respect to an origin O, the points A, B, C have position vectors 2i, 4, 6k respectively.
The points P and Q are the mid-points of AB and BC respectively, and the point N has
position vector 5i + 6j — 2k. The line [ passes through P and N.

i) Find a vector equation of / and find the perpendicular distance from the point Q to [,

if) Find a vector equation of the line of intersection of the planes ABC and OPQ, and find the
acute angle between these two planes.

i) Find the shortest distance between the lines OB and PQ. (OCR)

The line /; passes through the point A, whose position vector is | — j — 5k. and is parallel to the
vector i — j — 4k. The line /; passes through the point B, whose position vector is 2i — 9j — 14k,
and is parallel to the vector 2i + 5j + 6k. The point P on /; and the point Q on /; are such that

PQ is perpendicular to both [, and /,.

i) Find the length of PQ.
i) Find a vector perpendicular to the plane IT which contains PQ and /,.
ili} Find the perpendicular distance from A to [1. (OCR)

Let A, B, C, be the points (2. 1, 0), (3, 3, —1). (5. 0, 2) respectively. Find AB = AC.
Hence or otherwise obtain an equation for the plane containing A, B and C. (SOACSYS)
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35 The plane m has equation r.(2i — 3j + 6k) = 0, and P and () are the points with position
vectors Ti + 6j + 5k and i + 3j — k respectively. Find the position vector of the point in which
the line passing through P and Q meets the plane =.

Find, in the form ax + by + ¢z = d, the equation of the plane which contains the line PQ and
which is perpendicular to =. {OCR)
36 a) With the help of Fig. 1 below and using, where appropriaie, the notation in the figure, show
that the volume of the tetrahedron OABC is

|
—|n.e
6

wheren=a = h.

Fig. 1 Fig. 2
b) In the tetrahedron OABC, shown in Fig. 2 above, the equation of the plane ABC is

12x 4+ 4y 4+ 5z =48
i} Cven that A 1s on the x-axis, find its coordinates.
The equation of the plane OBC is —dx + 4y + =0,
ily Show that the equation of BC is

(0

iii} Given that B is in the xy-plane show that it 15 the point (3, 3, 0).

. . . . X _2=y 8-:
The cartesian equation of AC is 3 = —I—u- = 2
i) Find the coordinates of C.

v) Find the volume of this tetrahedron. (NICCEA)

Scalar triple product and its applications

The scalar triple product of a, b and ¢ is defined asa.b x ¢,

Note We must calculate a.b < ¢ as a. (b x ¢). If we tried to calculate it as
(a.b) x ¢, we would have the vector product of a scalar and a vector, which,
by defimtion. cannot exist.
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CHAPTER 8 VECTOR GEOMETRY

3 2 7
Example 21 Calculate | 4 | .| 3 | =< | 4 ].
7 -1 2

SOLUTION
We must calculate the vector product first:

(3)-0)- ()= C)-(2)- ()
-(5)-()

Then we calculate the scalar product:

3 10
4 1. -11 ] =30-44-91=-105
7 =13

Therefore, we have

()0

A quicker way to find a.b x ¢ is as follows.

EEE S FESEEESEESEEESEEEEEEEEEEEEEFEEEEEEEEEREEEES

The vector product b = ¢ is given by (see page 104)

ik
bxe¢= hl ﬁ: ﬁj
€ O

= (brey — byes) — jlbyey — byey) + k(byoz = bay)

Therefore, the scalar triple product a. b x ¢ 1s given by (see Introducing Pure
Mathematics, page 503)

a.b x ¢ = ay(bicy — byey) — as(bycy = byey) + as(byc; — biey)
That is,

ay @y i
a.bxe=\|b b b
6 1

Applying this result to Example 21, we would have

3 2 7 314 7

7 =1 2 7 4 2
=3x10-4x11+7x-13
= =105
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Coplanar vectors
We have
a.bxc=a.(bcsintin)
= gbesinffeos ¢

where 0 is the angle between b and ¢, and ¢ is the angle between a and n,
which is perpendicular to the plane containing b and ¢. Therefore, we get

a.b x ¢ =abhcsinfsing
where ¢ = (90" — &) is the angle between a and the plane containing b and ¢.

Hence, when a, b and ¢ are coplanar (a, b and ¢ lie in the same plane). we have

[ a,bhxe=1

Volume of a cuboid

Cﬂmsi(E. cubnid_{j)BD{ZAQRS. which has adjacent b "
edges OA = a, OB = b and OC = . .\ : 0
The volume of a cuboid 1s given by :
Volume = Area of base x Perpendicular height ad . "{- """""" freranenesy D
Therefore, the volume, ¥, of OBDCAQRS is . P |
b

V=(hxc)xa=ahe

Now, b and ¢ are perpendicular to each other, and a is perpendicular to the
plane containing them. Hence, we have

a.bxe=aghesinW sin9)" = ahe

Therefore, the volume of a cuboid is given by
{ F=a.bxc

where the vectors a, b and ¢ represent three adjacent edges of the cuboid.

Note  Since the volume of any shape must be positive, we always use the
magnitude of a.b = ¢ in volume calculations.

Volume of a parallelepiped

A parallelepiped is a polyhedron
with six faces, each of which
is a parallelogram.
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CHAPTER 6 VYVECTOR GEOMETRY

Consider the parallelepiped OBDCAQRS., which has adjacent edges OA = a.
OB =band OC = c.
The volume of a parallelepiped is given by

Volume = Area of base » Perpendicular height
Therefore, the volume, V, of OBDCAQRS is

V= ib x ¢| x Perpendicular hewght
Now, the perpendicular height, AP, is |a| cos 0. Therefore, we have

= |bxe| x |alcosf

= |a||b x ¢/cosf!

We note that this is identical to the scalar product x. ¥ = x| |y| cos 0, with
[x| = |al, |¥| = |b x ¢] and b x ¢ having the same sense as PA. Therefore, the
volume of a parallelepiped is given by

[ V=a.bxe

where the vectors a, b and ¢ represent three adjacent edges of the
parallelepiped.

Example 22 Find the area of parallelogram ABCD, where A is (3,1, 7),
Bis{2,0,4)and Dis(7.2,-1).

SOLUTION

We have the adjacent sides

i) ()-()
o (3)-()- ()

The area of parallelogram ABCD is [Iﬁ x AD/, which gives

i j k
Area=|-1 -1 =3
4 i -8
= |11i — 20§ + 3k|

=V11+ 200 + ¥ = /530

Example 23 Find the volume of parallelepiped ABCDPQRS, where A 15
(3,1,7,, Bis(2,0.4), D is (7,2, - 1) and P is (8,5, 11).
SOLUTION
The volume, ¥, of parallelepiped ABCDPQRS is given by
V= AP.AB x AD
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We have

(i) ()-6)

1
Using AB = AD = ( =20 | from Example 22, we gel
3

V= AP.AB x AD

3 11
=1 2].| 20| =55-40+12=27
4 3

Or we can use (sec pages 122 and 124)
5 2 4
-1 =1 =3
4 1 =8

V= =58+ 3)~ A8 +12) +4(—1+4) =27

Note AB.AD x AP could be used. since the order in which we select the
three adjacent edges is not relevant, but each vector must be away from, or
towards, the same point of the parallelepiped.

Volume of a tetrahedron

A tetrahedron is a polyhedron with four faces, each of which
is a triangle. That is. it is a pyramid with a triangular base.

Consider the adjacent edges AD, AB and AC, represented by
the vectors a, b and ¢ respectively.

The volume of a tetrahedron is given by

l . .
Volume = 7 X Area of base » Perpendicular height

Therefore, the volume, V, of tetrahedron ABCD is
V= % * %,h x ¢ x Perpendicular height
Now, the perpendicular height, DP, is |ajcos (1. Therelore,

= %!hx ¢l % |alcost = —|a| b = ¢[cos i

L=

Because b« ¢ has the same sense as PD, this gives

l
I'=-a.b
[ 6: x ¢

where a, b and ¢ are the vectors representing three adjacent edges of the
tetrahedron.

Therefore, the volume ol a tetrahedron is one sixth of the volume of a
parallelepiped.
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CHAPTER 68 VECTOR GEOMETRY
Example 24 Find the volume of tetrahedron PQRS, where P is (3.4.7).
Qis (-2, 1,5, Ris(l,3,~1)and 5is (-3,6,8).

SOLUTION

We have

-5 _3
PTj:q-p:(—-}) Iﬂ'{zr—p:(—l) P5=ﬁ.—p=
| -8

Therefore, the volume, V, of tetrahedron PQRS is given by

[-'u%xfl’_{j_ﬁxﬁ.
-5 -3 -2

——|-2 -1 -8
6l 6 2 1

:%{—Sx 1S4 3% —50 -2 % —10)

_ 25
b

Therefore, the volume of tetrahedron PQRS 15 %j

Volume of a triangular prism

The volume of a triangular prism is given by
Volume = Area of base x Perpendicular height
By definition, the base is a triangle. So. we have

Area of base = = b x ¢

o | =

Therefore, the volume, ¥, of the prism is

V= %|h x ¢| x Perpendicular height

-
—

laf b x ¢

b | ==

which gives

F=—a.bxg¢
7

where a is the vector representing an edge of the prism, and b and ¢ are the
vectors representing two sides of 1ts triangular base, adjacent to a.

126

(

-6
2
1

|



&

SCALAR TRIPLE PRODUCT AND ITS APPLICATIONS

Volume of a pyramid
The velume of a pyramid 1s given by
Ve % = Area of base = Perpendicular height
Taking the case of o rectangular {or parallelogram) base, we have ‘*

- %u} x ¢| x Perpendicular height

where b and ¢ represent adjacent sides of the base,
as shown in the diagram on the right.

From the diagram, we see that the perpendicular
height is |a| cos #. Therefore, we have

.
V= E'Il |b > ¢|cost

Because b = ¢ has the same sense as PV, this gives

t':la.bxt
k]

Therefore, the volume of a pyramid with a rectangular {or parallelogram) base
15 one third of the volume of a parallelepiped.

Example 25 Find the volume ol pyramuid ABCDYV, where ABCD 15 a
parallelogram, and V is the vertex. A s (2,1,5), Bis (3,4, -2), D is
(5,2,3)and V is {0, 6,4).

SOLUTION

We have

- I . 3 - -2
AB=b-a=|[ 3 AD=d-a=| I AV=v—a=| 35
—7 -2 -1

Therefore, the volume of pyrumid ABCDV 1s

e g 2 | 3
—~AV_.AB x AD = — 5 ; i ® |
3 CR -7 -2
. | —
-2 s -
=1 3 =7
303 1 -2
=%|—‘21~—ﬁ+?}—5:—3+11]—l{l—'§!}]
:%{—2xl+—5xl9—lx—3}
Vs g5
—3[2 95+ §)

Therefore, the volume of pyramid ABCDYV is E—f
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Exercise 6C

Fa RS L

3 2
1 Find the value of 1
4
2 3 2
2 Find the value of 4 . -3 1.
2 B
2 3
3 Findthevalueof | 2 |.| 3] =1|8].
5 | 4

4 Find the volume of a parallelepiped ABCDEFGH,

() -(3) (9

§ The figure on the right represents a cube with side
of unit length.

i) Find AB.AC.
i) Find a vector, using the letters in the diagram,

which is equal to EA = EH.
iiiy Find the value of 2 in the following equation

EA % EC = iBD  (NICCEA)

—

T

T

& The points A, B, C and D have coordinates (3, 1,2}, (5,2, =1}, (6,4, 5) and {-7,6, =3)
respectively.
a) Find AC x AD. L
b} Find a vector equation of the line through A which is perpendicular to AC and AD.

¢) Verify that B lies on this line.
d) Find the volume of the tetrahedron ABCD. {(EDEXCEL)

7 The figure on the right shows a nght prism with triangular
ends ABC and DEF, and parallel edges AD, BE, CF. Given _
that Ais (2,7, 1), Bis(5,8,2), Cis (6,7, 4} and D is (12,1, -9}, 9 F
a) fmd AB x AC

b) find AD.(AB x AC).
¢) Calculate the volume of the prism. {EDEXCEL)




EXERCISE 6C

8 The points A, B and C have position vectors am, bm and em respectively, relative to an
origin O, where
a=3i+4j+5k b=di+6j+Tk c=i0i+5+3k
a) Find (b —a) = {e — a).

b) Hence, or otherwise, find the area of AABC and the volume of tetrahedron OABC.
¢) Find an equation of the plane ABC in the formr.n = p.

Given that the point D has position vector (2§ + j+ 2kjm,

d) find the coordinates of the point of intersection, E, of the OD with the plane ABC
e) find the acute angle between ED and the plane ABC. {EDEXCEL)
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7 Curve sketching and inequalities

And of the curveship lend a myth ro God,
HART CRANE

Curve sketching

On page 306 of Introducing Pure Mathematics, there is a brief introduction to
the use of asymptotes in curve sketching. We are now going to extend the
procedure to more complex curves.

Remember An asymptote is a line which becomes a tangent to a curve as x or
¥ tends to infinity.
We need to be able to find asymptotes if we want to sketch functions which
are not trigonometric or polynomial.
Consider, for example, the curve
= dr—8
C x+43

As y — %00, the denominator of this function must tend to zero. That is, as
x+3—0, x — 3. Hence, x = -3 is an asymptote.

To find the asymptote as x — +oc, we express the function as

g
y = . x
L3
l + —
3 8 4 .
As x — +oo, — — 0, and — — 0. Therefore, y — 1= 4. Hence, v = 4 is also
X x

an asymptote.

Notice that, as x — *noc, the largest terms in the numerator and the
denominator are 4x and x respectively, and so y=4x +x=4.

x = =3 is a vertical asymptote, as it is parallel to the y-axis,and y =4 i1sa
horizontal asymptote, as it is parallel to the x-axis.

4x —

To be able to sketch y = '1' 33. we also need to find where it crosses the
X+

x- and y-axes:

L
3
When y=10: dx—-8=0 = x=2

When x=0: y=—
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To sketch the curve, we proceed as follows (see the diagram
on the right):

First, draw the asymptotes, using dashed lines.
Next, mark the points where the curve crosses the axes.

As the numerator and the denominator of the function
each contain only a linear term in x, the curve cannot
cross either asymptote,

Considering the curve for x > -1, we see that it tends

to —oc as x approaches —3 from values of x greater than
—3. Hence, the curve tends to 400 as x approaches —3
from values of x less than —3.

4x -8
x+3

We can now complete the curve of y =

-

CURYE SKETCHING

T T

- f
Y- 5

-
Example 1 Skeich y = =t

SOLUTION

First, we find the asympiotes.

As x — #nc, vy — 2. That is, the horizontal asvmptoie 1s y = 2.

As ¥ — +a20, x — 5 — 0. Hence, x = 5 is the vertical asymptote.
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CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

mext, we find where the curve crosses the axes:

When x =10 y =_—ﬁ = é
-5 3
Wheny=0: 2x-6=0 = x=3
Iy —
We now complete the sketch of v = =t f which is shown below.

xX=23

Curves with an oblique asymptote

For most curves, the value of v as x — =o¢ will not be finite.

Consider, for example, the curve
|

y=Xx+—
X

1 .
As x — +o¢, — — 0 and thus y — x, Therefore, v = x is an asymptole to the
. X
curve,

This is called an oblique asymptote (sometimes an inclined asvmptote), as p = ¥
is not parallel to either axis,

The other asymploie 15 x = 0 {the y-axis), as 1., 2, when x — 0.
x

When x = 0, y is not defined, thus the curve does not cross
the y-axis. Thus, the y-axis is a vertical asymptote, as
already shown.

We can now sketch the curve of v = x + l_ as shown on
the right. *
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SKETCHING RATIONAL FUNCTIONS WITH A QUADRATIC DEHNHOMINATOR

2 ]
x4 3x

Example 2 Skeich y = 1
X+

BOLUTION
Dividing x* + 3x by x + 1, we obtain
'

-

rt=x+2-
x+1

which gives the asymptotesas x = —l and y = x + 2.

We now find where the curve crosses the axes:
When y=0: »+3x=0 = x=0 and -3
Whenx=0 p=10

x4+ 3x

We now complete the sketch of p = 1
X+

Ly | iy

P

EAEEEENE NS EEE NN ENE NP E NI NI TN TANEE AN T A PRI RSN AW

Sketching rational functions with a quadratic denominator
Curves with two vertical asymptotes

(x—3)2x - 5)
(x+1Hx+2)
When the denominator is a quadratic expression,

Take, for example, the curve y =

o there arc always two vertical asymptotes, and
e the curve will normally cross the horizontal asymptote.

Hence, in addition to finding the asymptotes and the points where the curve
crosses the axes, we need 1o establish where the curve crosses the horizontal
asymptote.

Note The two vertical asymptotes could coincide, as in Example 4. on
page 135,
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Hence. there are four stages to sketching the given function.

. . (e =32 -5 .
1 To find the horizontal asymptote of y = . we express the
(x + 1}{x + 2)

[unction as

6

. I . :
As x — $0o0, — — 0, and y — 2. Therefore, the horizontal asymptote is
X
y=2

2 To hind the vertical asymptoies, we equate the denominator to zero, which
gives
(x+IKx+2)=0

Hence, the vertical asymptotes are x = —[ and x = -2,

3 To find where the curve cuts the axes. we have

When vy =0: yp= -l;s~

When y=0: x=3 and x=%

4 To find where the curve crosses the horizontal asymptote, y = 2, we have
) - (x — 32x — 5)
(x+ IKx + 2}
AP +3x+=2x"—llx 415

11

17

To sketch the curve, we need to insert all four points, as
well as the three asymplotes.

MNote

[T 5]

e The curve can cross an axis or an asymptote only at
the points found.

L T O

=Y

¢ Il one branch of the curve goes to <0, the next branch
must return from —nc. The exception to this is when the
two vertical asymptotes coincide as the result of a squared
factor in the denominator. See Example 4 on page 135.
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SKETCHING RATIDNAL FUNCTIONS WITH A QUADRATIC DENOMINATOR

Example 3 Sketch v = x_2)x=9)

SOLUTION
The horizontal asymptote 1s y = 1.

vertical asy s are x = 2and x = 5.
The vertical asymptotes are Zand x =35

The curve crosses the axes at x =40, vy = — ﬁ andaty =0, x = -1, 4,
The curve crosses the horizontal asymplote when v = 1, which gives

e -Tr+ =" —-3x -4

= X =

b | b

We can now sketch the curve.

y - “ e
Example 4 Sketch the curve v = —~DE3x+2)

(x+ 1)
SOLUTION
The horizontal asymptote is y = 3.
The vertical asymptotes are x = —1 {twice}.
The curve crosses the axesat x =0, y = -2, andaty =0, x =1, - 4.

The curve crosses the horizontal asymptote when y = 3, which gives
A —x-12
Coxt42x+1
Wl +2x+ =3 —x =2

3

= =

I
= | L
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Note Since x = —1 is a repeat asymptote, and the curve tends to +oc as
x approaches the value of —1 from the right (that is, x tends to —1 from
above), it also tends to +o0 as x approaches the value of —1 from the left
{that is, [rom below).

Curves without vertical asymptotes

Not all functions of the form y =

s
ax-+hx+¢

. have vertical asymptotes. If the
PXi4gx4r

roots of px* + gx + r = 0 are not real, the curve will not have a vertical
asymptote.

2 +5x43

Example 5 Sketch t e y = .
. © i dxl +5x+3

possible values for y.

and find the range of

SOLUTION
27 4+ 5x+3

To find the horizontal as tote of y = ——8M88—,
ymp Todxt 4+ 5x+ 3

we express the

function as

2+£+
X
y=

4+5

X

3
x4
3
T3
As x — oc, y — L. Therefore, y = 1 is the horizontal asymplote.

For the vertical asymptotes, we have 4+° + 5x + 3 = 0, which gives

L =S£V=D3
8
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SKETCHING RATIONAL FUNCTIONS WITH A QUADRATIC DENOMINATOR

These are not real. Therefore, the curve does not have a vertical asymplole.
To find where the curve cuts the axes, we have
Wheny=0: 27 +5x4+3=0
{2x +3)x=-11=0

= x=-1 and -

b | e

When x = 0; y=1

The curve crosses the horizontal asymptote vy = 5 when

LI

1 _ 24 5x+3
2 4t Sv 43
which gives
A4+ 5v+3=47+10x+ 6
3

=== X= ==

LA

We can now sketch the curve. ¥

To find the range of values of y, we need to find the values for which
- 2x° + 5x 4 3

= — has real roots for x.
4x- +3x+3

Tl S

. . we obtain
dx’ + 5x 4+ 3

Cross-multiplying v =

4y + Spx 4+ dp =2 4 Sy 43
= W=+ 8r-5x+3r-3=0

From the quadratic formula, we know that #° — 4ac = 0 for the roots of x
to be real. Therefore. we have

Gr-5r —4dr -2y -N=0
= 2y -22y—-1<0
= (23r+INy—-11<0

1
= —5 5}’%'

Therefore, the range of possible values of yis — <& <y < 1.

Hence, the maximum value of v is 1, and the minimum value is — 5.

Note We could have used caleulus to find these two stationary points.
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CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

Exercise 7A
Sketch the graph of each of the following functions.

1 J.={-‘"3:'{-"_” 2 _l.z':l"_l:'{-":+4}
(x+20x—=2) (x=1)x-2)
(x+4)x -3 (x + 1}2x + 5)

3 p o= T . W— ‘ =

! (x —2)x—3) ! (x + 2)(x - 3)
. 22 4+ 3x—3 3x 4 dx 4+ 4
y=—— 6 y="—"—
x1-x-2 xt—2x—3

7 Find the range of values of

4x* —x -3 X4+x-1
pm— = b) y = —
) Ixt—-x-3 ) .

8 Find the equations of the three asymptotes of the curve

4t —5x47

- OCR
Y= e —x—10 OCM

9 Find the equations of the asymptotes of the curve

y=f.___x_t!. (OCR)
x+1

10 One of the two asymptotes of the curve
o+ ix+

BETY

where 4 is a constant, is ¥ = x + 5.

i) State the equation of the other asymptote.
if) Find the value of A. {OCR)

y

11 The curve C has equation
8 27

xr—2 x+42

i) Write down the equations of the asymptotes of C.
dz_r

y=10+

ii) Find

da?
i) Show that C has one point of inflexion, and find the coordinates of this point.
: 2§
12 Ac has equat =
urve has equation y = ——————1

a) Determine the equations of the three asymptotes to the curve, giving each answer in an

exact form.

b) Prove algebraically that there are no values of x for which { < y < £,

Hence, or otherwise, calculate the coordinates of the turning points on the curve.
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2y

13 A curve has equation v = T
a) 1) Write down the equation of the vertical asymptote to the curve, and determine the
equation of the oblique asymptote.
il) Use differentiation to determine the coordinates of the stationary points on the curve.
b) The region bounded by the curve, the x-axis between x =0 and x = |, and the line x = | is
rotated through one revolution about the x-axis to form a solid with volume V.

Using the substitution u = 2x + |, or otherwise, show that

R Fid
4 =§{4—3[n3] {AER 98)

14 Let the function f be given by

k] k
fx) = 2 “(1"‘; ;‘" +3 2

a) The graph of y = f(x) crosses the y-axis at (0, a). State the value of a.

b) For the graph of f{x)
Iy write down the equation of the vertical asympiote,
il) show algebraically that there is a non-vertical asymptote and state its equation.

¢) Find the coordinates and nature of the stationary point of fix).

d) Show that fix) = 0 has a root in the interval —2 =< x < 0.

e) Sketch the graph of y = f(x). (You must include on vour sketch the results obtained in the
first four parts of this question.) (SOA/CSYS)

15 The curve C has equation
27 + 6x + |

Tox=1lx+2)
i) Express v in partial fractions.
i) Deduce that
a) at every point of C, the gradient is negative
b) y = 2 forall x > 1.
iil) Write down the equations of the asymptotes of C.
iv) One of the asymptotes has a point in common with C. Determine the coordinates of this

point. ({OCR)

16 A curve C is defined by the equations

_ 1+ 1+ r
1—1 I =0
where 1 i1s a real parameter, r # =1.

X

a) Find an expression for ;—‘ in terms of ¢, simplifying your answer as much as possible.

X 3
o . : x4 1
b) By eliminating 1, prove that C has cartesian equation y = : .
2x

e) Write down the equations of the two asymptotes of C.
d) I) Prove algebraically that there are no values of x for which -1 < y < 1.
ii) Hence, or otherwise, determine the coordinates of the turning points of C.  (AEB 96)
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CHAPTER T CURYE SKETCHING AND INEQUALITIES

Inequalities
In Introducing Pure Mathematics (pages 6 and 36), we found how to solve
simple inequalities such as

4x+T7>3x-4) and x*=Tx+10=0

We established that we can add and subtract as usual with an inequahty
symbol, as il it were an equals symbol. But 1o multiply or divide by a negative
number, we must change the sign of the inequality. For example, we have

32 bt -3« =2
=2x>4 = x<-=12

Hence, an inequality such as ax +'f; = 2 cannod be solved simply by
CX o

multiplving both sides of the iﬁcqualit}' by ¢x -+ ¢, since we do not know
whether cx + o is positive, giving

ax + b > Hex + d)
or negative, giving
ax + b < 2ex + d)

ax -+ b

To solve inequalities such as
two methods. ex +d

1 Multiply both sides of the inequality by (ex + o), which we know must be
positive.

> k, we can use either of the following

ax + b. solve ax + b
cx+d ex +dd

results, write down the solution 1o the inequality.

2 Sketch v =

= k and then, by comparing these two

You should be able to use both methods, but the one which you prefer will
probably depend on whichever is better, your algebraic skill or your graphical
skill.

Example 6 Solve the inequality 511_? > 2
SOLUTION

Method 1 .

Multiplying by (x 4+ 3)°, we obtain

h_QU43faﬂx+m*
r+3

= (5x=9Nx+3)>2Ax+ 3
= (Sx—9Nx+3-2Ax+37 >0
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Noting that (x + 3) is a factor, we factorise to obtain
(x+3)5x—9-2Ax+3)]>0
= (x+3Mix-15=0
= (x+3Wx-=-5=0
= x>5 or x<-3

Method 2

5x-9

x+3

The asymptotes are x = =3 and y = 5.

Consider the curve v =

The curve cuts the axes at Gﬂ) and (0, =3).

5x -9

We can now skeich the curve of y =

x+3

INEQUALITIES

¥Elr+ - 5§

Sx=9=2x+3)

= 3xr=15

= x=35

We insert the point P (5, 2) on the curve. Hence, we can see that

5x-9
x+3 7

is satisfied by the part of the graph above the dotted line y = 2. That is,

where x > 5 or x < =3.
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CHAPTER 7 CURYE SKETCHING AND INEQUALITIES

Example 7 Solve the inequality Gt Dx+4) <2

(x=1)x-2)
SOLUTION
Method 1 . .
Multiplying by (x — 1)*(x — 2)°, we obtain
(x+1Nx+4)

x=1Dx=27 < 2x— 1VP(x-2¥
{.r—l]l{_.t—Z}“ Yix y o< 2x Fix ¥

= (x+Dx+4x—1x—2)<2x—1F(x=2)
= (x+Ix+NDx—INx=-2)-2Ax- 1Y (x-2" <0
Noting that (x — 1) and (x — 2) are factors, we factorise to obtain
(x = IHx—=2)(x+ IHx+4) - 2x - I}x-2)] <0
= (x=IDx=2[(F +5x+4-2"+6x—-4] <0
= (x=I0x=2=x+1lx)<0
= (x=Dix=2=11x)>0
= (x=IDx=Dx(x-=11)>0
Therefore, we have
(x+1)x<+4) o
(x = }x —2)
whenx> 1,1l <x<2 x<0.

Method 2

Consider the curve of y = (x + 1)x +4)

(x—x=-2)
The horizontal asympiote is y = 1.

The vertical asymptotes are ¥ = | and x = 2.

The curve crosses the axes when y =0, x = —1, =4, and when x =0,
y=2
When y = 1, we obtain
{.\:+le+4]:|
(x=1)}x-=2)
= X4+Sx+d=x'-3Ix+2
= 8x=-2
S —
4

When y = 2, we obtain
{:':'ai-l}lnr;;!r+4]:2
(x—=10x-2)

= X+S5x+4=2*-3x+2)
= 0=x-llx
= x=0 and 11
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INEQUALITIES

Therefore, we have
!'\I__L _I _}i‘_[‘ i 4_. <« 2
(x—=1Hx—=2)

when x> 11,1l <x <2 x <0

Inequalities involving modulus curves

In Introducing Pure Mathematics (page 95), we found how to solve simple
modulus inequalities. Here, we consider modulus inequalities involving
algebraic fractions.

Take, for example, the modulus inequality

5.1.'—9| -3

x+3

We solve this by first solving

X-9 _ 42 and =9 _

x+3 x+3
and then deducing the required values of x from the sketch of the curve

5x-9

y =

’ x+3
The skeich of y = 2= 3 e obtained by sketching y = 3%—9 nd

r+13 x+3

reflecting in the x-axis that part of the curve below the x-axis.
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CHAPTER 7 CURYE SKETCHING AND INEQUALITIES

X+

Thus, to solve | _:[ > 2, we proceed as follows,

A Sx
First, we solve
X+

; = 2, which gives x = 5 (as in Example 6, pages 140-1).

~9_ -2, which gives
x4

Next, we solve

Sy —9=-2x+3) = x=12

S5x—9
x+3

Then, we sketch p =

|
o

R I I I T

Finally, we sketch y = E"—_Tq| . (See top of page 145.}
Lo ol

oy — _ Sy — 9
Sx—9 = +2, and the point Q where ' -2,
x+3 x+13

Insert the point P where

Hence, we have
5x — 9
| x+3

when x > 5 and x < 4, excluding v = =3, where the curve is not defined.

> 2
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EXERCISE 7B

Exercise 7B

In Questions 1 to 4, solve each of the inequalities for x.

x+3
+1

Ir+4
x—35

1 a) <2

=2

d)

(x—1Ipx—2)
(x+ IMx+2)
(2x = I}x—=2) >3

9 {x=3)0x+T)

x+3
x+2
2x =1
x+5

3a | =1

d) | > 1

2Ly -
“II:'I 3}|
X4x=2

5 Find the complete set of values of x for which

6 Given that |x| # 1. find the complete set of values of x for which

7 Find the set of values of x for which x4 2 >

8 Find the set of values of x for which

xX+5

b
) x-13

> 1

{x<4+2}x - 5)
(x — INx—2)
(x4 Ix+5)
{x = 2)2x -+ 3)

b)

e)

x—-1

b) >2

x+2
3x -1

@
) x+2

>2

9,2 .

2x+x=5

) ———< 1
2x-4x=3

i

- X

X 2
<

x+2 x-1

145

x-12

¢) 2x -—31 >3
J44x
3
"
(x=1Mx=4) _,
Vara—s "

c) I+3‘:—:2
x"
x+2
" x 4+ 3
I _ v _9
€) — T 5
X4 3x 42
{EDEXCEL)
X 1
- > — .
x=1 x4+l (EpEXCEL)

(EDEXCEL)

(EDEXCEL)



CHAPTER 7 CURVE SKETCHING AND INEQUALITIES

4
9 Find the set of values of x for which x < == +15 . (EDEXCEL)
x=2
23 —x =17
x-3
of x for which 3 < y < 19. (AEB 98)

10 For the curve with equation y = . prove algebraically that there are no real values

Ix—-6
1 N=—— xeR,: 0, : —6
W= txrg *ENMxrhxs
a) Find the range of values of [{x).

Hence, or otherwise, sketch the curve with equation y = f{x). State the equations of any
asymptotes and the coordinates of any turning points.

b) Use your graph to find the number of real roots of the equation
bt =3x+6=0
¢) On a separate diagram, sketch the curve with equation y = |f{x)|. (EDEXCEL)

12 On the same diagram, sketch the graphs of
y=|x-35 and y=|3x-2|
distinguishing between them clearly.
Find the set of values of x for which [x — 5] < |3x - 2|. (EDEXCEL)

X-2 3 (EDEXCEL)
x+1

13 Find the complete set of values of x for which

14 Find the constanis P,  and R in the identity

: g
&EPI'FQ'FLI
X —

Hence write down the equation of the oblique asymptote of the curve C whose equation is
X 4x+2
y=—————
x—1
Show that C does not intersect this asympiote.

The points (=1, —1) and (3, 7) are stationary points of C. Sketch C, indicating the
asymptotes. (NEAB)

15 a) Sketch the graph of y = |2x + 3|, giving the coordinates of the points where the graph meets
the coordinate axes.
b) Hence, or otherwise, find the set of values of x for which 4x + 10 > |2x + 3| ({EDEXCEL)
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8 Roots of polynomial equations

And the equation will come at lase,
LOUIS MACNENCE

Roots of a quadratic equation
If z and [ are the roots of a quadratic equation, f{x) = ax’ + bx + ¢ = 0, then
the equation must be of the form

fix) = kix — a)dx — f) for some constant &
Therefore, we have

kKix-alx-fM=ax* +bx+c¢

= k(xX*-[x+flx+af)=ax’ +bx+¢
Equating the coefficients of x* gives: k=ua
Equating the coefficients of x gives: —kiz+ f)=5
And equating the constants gives: kafi=¢

Therefore, we obtain

:'.-:4—,|‘J’=—E and afi =
a
Or

. b s
The sum of the roots is —— and the product of the roots is —.
a a

Example 1 In the equation 3x* — Tx+ 11 =0, find

a) the sum of the roots
b) the product of the roots.

SOLUTION
a) Usingx+ fi = — i we have
o
Sum of the roots, 2 + fi = __T = +%

b) Using xfi = €. we have
o

Product of the roots, xff = ?
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CHAPTER B ROOTS OF POLYNOMIAL EQUATIONS

Conversely, we may write the quadratic equation as

[
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x? — (sum of roots)x + (product of roots) = 0

Example 2 Find the equation whose roots have a sum of 1 and a product
of =4, .

SOLUTION
Using x? — (sum of roots)x + (product of roots) = 0, we have

x!=dx=2=0 or 2x*=x=5=0

Example 3 The equation 3x* +9x — 11 = 0 has roots x and f. Find the
equaiion whose roots are x + § and .

SOLUTION
From 3x* + 9x — 11 =0, we have

1+p=-3 and =ﬂ=—?'

.
The sum of the new roots is: u+ﬁ+uﬂ=—3—%=—:;_}

The product of the new roots is:  (x+ ff) x afi = -3 = -Jil: 11

Therefore, the new eguation is
f+?x+ 11=0 or 3:+20x+33=0

Example 4 The equation 4x° + 7x — 5 = 0 has roots 2 and . Find the
equation whose roots are x° and ﬁl.

SOLUTION

From 4x° + 7x — 5 = 0, we have

s | L

x+_ﬁ=—% and aff = -

The sum of the new roots is
o+ = (x+ Y = 2af
Substituting the above values in the RHS, we obtain
1
o] 3 ? 5 39
=) 2x-2=2
o ( 4) T3 16

The product of the new roots is 2*f° = (2ff)°. Substituting the value for
zff, we obtain

1 _(_5\_25
(2ff) —( 4)—16

Therefore, the new equation is
- 89 25

X =—x+==0 or 1682 -=89x+25=0
16 16
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ROOTS OF A CUBIC EQUATION

Roots of a cubic equation

In a similar manner, if =, f# and 7 are the roots of a cubic equation,
ax’ + bx* + ex + d = 0, then we have

ax® + by 4 ex +d = kix — a)x — fix - y)
= ax +h ex+d sk = (2 + F 4+ a7+ (2ff + fy + ya)x — 2fiy]

; . . . h
Equating coellicients of x° gives: 2+ fi+ 7 =—~—
i

Equating coefficients of x gives: afi+ fiy + y2 = £
il

And equating the constanis gives: zfiy = — d
it

Example 5 Find the cubic equation in x which has roots 4, 3 and -2

BOLUTHON
The sum of the roots is
x+f+y=44+3+(~-2)=35
The sum of the roots taken two at a ume 1s
afi+fy+ra=4xI+3x -24+(-2x4)=-2
The product of the roots is
afiy =4 x3x -2=-24
Therefore, the equation is

Mo 2x+ M4 =0

Example 6§ The cubic equation x' + 3x* — 7x + 2 = 0 has roots z. f. 7.
Find the value of 2® + fi* + 4%

SOLUTION

From the cubic equation, we have

a+fity==3
afi+ iy +yx=-7
rfly = =2

We now expand (x + § + 7)° to obtain
L+ AP =+ 49 - 2af + fiy + 2)
Substituting the values, we oblain
oy = (=3 -2%x-T=23
Therefore, we have

2+ =23

AFEAEAEEEEAE NN EREEEEREEEEREEEN A
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CHAPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Roots of a polynomial equation of degree n

From the properties of the roots of a quadratic equation and of a cubic equation,

we see that in a polynomial equation of degree n, ax” 4+ bx"~' + ex" "2 4 ... =10,
the sum of the roots is -2 and the product of the roots is given by
a

First term
since the last term is the product of —zx, —fi, =y, =4, ....

Example 7 The roots of fix) = 4x* + 6x* — 3" + 7" — llx - 3 =0 are
a, B, 7. 6 and &.

a) Find the product of the five roots.
b) 1) Show that x = | is a root of the equation.

i) Hence show that the sum of the roots other than 1 15 - g

-

L

L

L

u

L

L ]

L]

[ ]

L]

L 1

w

E SOLUTION

. . b 6 3

= &) The sum of all five roots, =, f, 7, d and ¢, 1s =i
s bB) I) When x = 1, we have

: f1)=4+6-3+7—11-3=0

. Therefore, lrom the factor theorem, x = 1 is one root of the
- equation.

[ ]

. il) The sum of all five roots is -% (from part a). That is.

: 3

E z+_ﬂ+}'+ﬁ+r=-5

. Putting £ = 1, we have

L |

" 3 5
. ::+ﬂ+;-+:‘i+l=—§ = z+_ﬂ'+-;+=5=—§
:

[ ]

Therefore, the sum of the other four roots is — 'i'

Example 8 The equation z* + (3 + i)z + p = 0 has a root of 2 — 1. Find
the value of p and the other root of the equation.

SOLUTION
Since 2 — i is a root, = = 2 — i satisfies the equation. Therefore, we have
QR-iP+@3+)2-)+p=0
= p==104+5

The sum of the roots, z+ ff = -E. is —(3 + i). Therefore, the other root is
a

-3+i)-Q2-i)=-5
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Exercise BA

1

EXERCISE 8A

Write down the sum and the product of the roots of each of the following equations.
o) X +3x—T=0 B) ¥ —llx+5=0 ¢) ¥ +5x—-4=0

d) I +1lx+2=0 @) x+2=2> )2 =7 - 4x
X

Write down the cquation whose roots have the sum and the product given below.
a) Sum 7; product 15 b} Sum —3; product +5

g) Sum =2; product —4 d) Sum =3; product —11

If 2, f§, 7 are the roots of the equation x* — 5x + 3 = 0, find the values of

a) x+ fi+7 b) o & [ 47 ¢ x+fil 47

The equation 22 (7= 2i)iz + g = 0 has a root of | +1. Find i) ithe value of ¢ and ii) the other
root of the equation,

The equation 3z° = (1 - 1)z + ¢ = 0 has a root of 3 + 2i. Find # the value of  and i) the other
root of the equation.

Given that x, ff, y are the roots of the equation x* + x° + 4x = § = 0, find the cubic equation
whose roots are fly, ya and =/, {(WIEC)

Given the cubic equation x' — 7x 4 ¢ = 0 has roots «, 2x and f, find the possible values of g.
{WIEC)

The equation 3x* — Sx + 6 = 0 has roois z and . Without solving the given equation, find an
equation with iteger coefficients whose roots are (z + fi) and 2f. (EDEXCEL)
The roots of the equation x* — 3x* — 3x — 7 =0 are z, f and 7.

a) Find the value of & + f* + %,
b) Show that

1z f
x 1 p|=0  (NEAB)
gy
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CHAPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Equations with related roots

If x and J are the roots of ax® + bx + ¢ = 0, then we can obtain the equation
whose roots are 2x and 2f by making a substitution for x.

First, we express ax” + bx + ¢ = 0 as
alx —alx—-f)=0

which gives
a(2x — 20)(2x — 20) = 0

We obtain the required equation, whose roots are 22 and 2ff, by putting
¥ = 1x, which gives

aly = 2a)(y - 2f)=0
Hence, replacing x by % gives an equation whose roots are twice those of the

original equation.

Example 9 Find the equation whose roots are 3x and 3f, where x and ff
are the roots of the equation 2x* — 5x +3 = 0.

SOLUTION

Replacing x by % in 2x* — 5x + 3 = 0, we obtain an equation in y whose

roots for Jj- are the same as those for x: that is, 2 and . Hence, the roots
for y will be 3z and 3.
Therefore, the required equation is
2(2)-3(3) +2-0
= 2y —15v+27=0
If the equation is to be expressed in terms of x, it would be
27 - 15x+27=0

Example 10 Find the equation whose roots are o, f°, +*, where 2. f8, 7
are the roots of 3 = 7T + 1lx = 5=0.

SOLUTHOM

Replacing x by /¥ in 3x’ = 7x* + llx -5 = 0, we obtain a, fi, y as the
roots for /7. Hence, the roots for y are 2%, f°, ¥

Therefore, the equation in /¥ is

Y =W+ 1M =-5=0
= g+ F=Tr+5
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EXERCISE a8

Squaring both sides, we have

917 4 6617 + 121y = 49y + 70y + 25
Therefore, the required equation is

9 L AT + 51y =25=0

Exercise 8B

1

10

11

12

The roots of the equation x° + Tx - 1l = 0 are x and fi. Find the equation whose roots are 2x
and 26,

The roots of the equation x* — 15x + 7 = 0 are 2 and fi. Find the equation whose roots are 32
and 3.

The roots of the equation 3x' — 4x° + 8x — 7 = O are 2, f and 7. Find the equation whose roots
are 2o, 2ff and 2y,

The roots of the equation x* — 3x% = 1lx+ 5 = O are z, f and 7. Find the equation whose roots

‘ .
are i. ‘II— and =,
707 2

The roots of the equation 2x* 4 3x + 17 = 0 are z and #. Find the equation whose rools are

and .

The roots of the equation 3x* - 7x + 15 = 0 are z and §. Find the equation whose roots are «°
and #°.

The equation 2x° + Tx + 3 = 0 has roots x and f. Find the equation whose roots are

a) 2x.2f b} =, % ) o« d) x+2.8+2

|

The equation 3x° + 9x — 2 = 0 has roots z and f. Find the equation whose roots are

a) 42,48 b) % f—: ¢) =, d) -3 03

The roots of the equation x° + 3x° + 3x+ 7 = 0 are 2, § and 1. Find the equation whose roots
are

a) 3x.3f,3; b) o, g a+3.f+3y+3

The roots of the equation x* + 33" + 73" = llx + | = O are , ff, y and 4. Find the equation
whose roots are 3z, 3fi, 3y and 34,

i .
The equation x <+ 2 + = = 0 has roots z and f#. Find the equation whose roots are 52 and 5.
X

The reots of the quadratic equation x* — 3x + 4 = 0 are z and §. Without solving the equation.

: . . . I | N
find a quadratic equation, with integer coellicients, whose roots are — and E (EDEXCEL)
x
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CHAFPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

Complex roots of a polynomial equation

If = = x + 1y is a root of a polynomial equation with real coefficients, then
Z = x —iyis also a root of the polynomial equation, where = is the conjugate
of z (see page 3).
Proof
Suppose = is a root of the polynomial
2"+l 12" a2 Ay =0

Then, taking the conjugate of both sides, we have

A" +dy 1V 4a, 2" 4 +ag=0

Using z; + z; = Z; + I3, we obtain

G2 + @y 2"V @y 22" 4. ..+ =0
And using I 5; = 5] 53, we obtain

G+ 8y 1Vt a, 27 2+, . +G=0

which gives
L+ 8@+ a4 2@ T+ 4T =0
Since all the a; are real, @ = ;. Therefore, we have
an(Z) +ay 1@+l =0

Hence, # is also a root of the polynomial.

The complex roots of a polynomial with real coefficients always occur in
conjugate complex pairs.

Note We found in Example 8 (page 150) that when a gquadratic equation does
not have real coefficients, the roots are not conjugate complex pairs. (In
Example 8, they are 2 — i and -5.)

Example 11 Show that 4 — i is a root of the polynomial equation
)= -62+2+34=0

Hence find the other roots.

SOLUTION

To prove that z =4 —iis a root, we prove that f(d - i) =0. If z=4 - i is
a root, then =z = 4 + 1 is also a root, since the roots occur as conjugate
complex pairs.

Next, we find the quadratic with real coefficients which is a factor. We
then divide f(z) by this quadratic to find the other factor.
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COMPLEX ROOTS OF A POLYNOMIAL EQUATION

Substituting z =4 —iin f{z) = ' — 627 + 2 + 34 = 0, we have
f4—iy=@—if -4 —i) +@-i)+34
=52-4N1 -+ 481 +4 -1+ M
=0

Therefore, 4 —iisarootof fiz) == — 622 + =+ 34 = 0. Hence, 4 +1 is
also a root,

If z = (4 +1) and z — (4 — i) are factors of the polynomial, so is
F—(@+Dz—(@—i)]=2—8+17

Dividing =} — 62° + z 4+ 34 = 0 by z* — 8z + 17, we obtain
(2)=( -8z +17}z+2)

Therefore, the three roots of fiz) == — 62 +z+ 34 =0ared +i,4—1i
and -2,

Example 12 Show that 2 + 1 is a root of the polynomial equation
()= - 122 + 6222 - 140+ 125 =0
Hence find the other roots.

SOLUTION

As in Example 11, to prove that = = 2 + i is a root, we prove that
fi2+i)=0.1fz=2+1iisaroot, then z = 2 —i 15 also a root,

Next, we find the quadratic with real coefficients which is a factor. We
then divide f(z) by this quadratic to find the other factors.

Substituting z = 2 +iin f(z) = z* = 122 + 6227 = 140z + 125 = 0, we have
R4+i)=Q+1)' =122+ +622+ i) — 140(2 +i) + 125
= —7 4+ 24i — 24 — 132i + 186 + 248i — 280 — 140i + 125
=0

Therefore, (2+1isarootof f{z) =24 = 1227 4+ 6222 = 140z 4+ 125 = 0.
Hence, (2 — 1) is also a root.

If z = (2+1) and z — (2 —1) are factors of the polynomial, so is
[2-Q@+ilz-Q2-i)=2-4z+5

Dividing z* — 12z* + 6227 — 140z + 125 by =* — 4z + 5, we obtain
f(z) = (2 = 4z + 5)(=* = 8z + 25)

Using the quadratic formula, we find that the roots of =* — 82+ 25 =10
are 4 = 3i.

Therefore, the four roots of f(z) = z* — 1227 + 62 — 140z + 125 = 0 are
244,20, 4+ 3iand 4 - 3i.

155



CHAFPTER 8 ROOTS OF POLYNOMIAL EQUATIONS

LA R A AR R R RRSdRRRRRRRRRRRRRR R RIRTRERORDRIEROORIANERARRSRUTRIRTRRARRAREURINRTNTRTRERNTDOSROPRORTEDYE!

Example 13 The roots of the equation fix) = 2x' — 3x° + Tx - 19 =0 are
a, ff and 7. Show that

a) there is only one real root
b} the real root lies between x =2 and x = 3
¢} the real part of the two complex roots lies between — 1 and — §.

SOLUTION

To show that a cubic equation has only one real root, we find the values
of f{x) at its turning points. Hence, we will be able to see which of the
following curves 1s f{x).

¥ L L'

a-1+

\

¥

0 X l_)\-/ x

Note When the values of fix) at iis turning points are of opposite sign,
fi{x) = 0 has three real roots.

a) To find the values of fix) at is turning points. we differentiate v}
flx) =20 -3+ Tx - 19
fx) =6 —6x+7
Hence, we have
6 —6x +7 =0

t_ﬁiﬁﬁ—lﬂ
T 12

That is, I"(x) = 0 has no real roots. Hence, the cubic f{x) has no
turning points, which means that fix) = 0 has only one real root.

=

b) We find that
fi2)=—1 and f(3)=+29

So, f(x) has opposite signs at x = 2 and x = 3 and is continuous for
2 = x = 3. Therefore, the real root of f{x) = 0 lies between x = 2 and
x=3

¢} Let the three roots of the equation be x, f, 3, where = is a real number
between 2 and 3, and f and y are complex numbers.

Since the roots of a polynomial with real coefficients oceur in conjugate
complex pairs, ff and y are conjugate complex numbers, which we will
represent by p -+ ig and p - ig.

156




EXERCISE &C

Usinga+f+y=— E we find
a

T

x+f+7=:

[ ]

which gives
a+p+ig+p—ig=

= Ip==—-u

P | Lad B2 ] tas

Singe 2 < 2 < 3, we therefore have

; 3
~3<ip<s-2

b | e

3 1
LA, T .
= S<Pp< -7

= —E{ {—l
PR

Hence, the real part of each complex root lies between — § and — 1.

Exercise 8C

1 Solve the equation x* — 5x' + 2x* — Sx -+ 1 = 0, given that i is a root,

2 Solve the equation 3x* — ' + 2x° — 4x — 40 = 0, given that 2i is a root.

3 Determine the number of real roots of the equation 2x° + 2% = 3,

4 Determine the number of real roots of the equation 2x* — Tx + 2 =0,

5 Determine the range of possible values of & if the equation x' + 3 = k has three real roots,
6 One root of the equation =¥ — 52" + 132° — 162 + 10 = 0 is | + i. Find the other roots.

7 a) Show that one root of the equation z* + 527 — 56z + 110 =01is 3 + i,
b) Find the other roots of the equation.

8 a) Show that one root of the equation * — 2% +62° + 222 + 13 =015 2 - 3i.
b} i} Find the other roots of the equation.
1) Hence factorise =* — 2% 4+ 6= + 222 + 13 into two quadratics, each of which has real
coefficients.

9 The polynomial f{z} s defined by
flzy=*-22+32-2:42

a) Verify that 1 is a root of the equation {(z) = 0.
b) Find all the other roots of the equation fiz) = 0. (EDEXCEL)

10 Given that 2 + 1 is a root of the equation 3x* — 145" + 23x = 10 = 0, find the other roots of the
equation. (WIEC)
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11 One of the complex roots of 2=* — 1327 4+ 3327 — 80z — 50 = 0 is (1 = 3i), where i* = 1.
i) State one other complex root.
il) Find the other two roots and plot all four on an Argand diagram. (NICCEA)

12 Given that 31 is a root of the equation 3z° — 527 + 27z — 45 = 0, find the other two
roots. (OCR)

13 a) Verify that = = 2 is a solution of the equation = — 8z° +22: —20=0.
b) Express z* — 827 +22- — 20 as a product of a linear factor and a quadratic factor with real
coefTicients. Hence find all the solutions of = — 8% + 22z — 20 = 0. (SOA/CSYS)
14 Two of the roots of a cubic equation, in which all the coefficients are real, are 2 and 1 + 31.
0 State the third root.
i) Find the cubic equation, giving it in the form =* + az* + bz + ¢ = 0. (OCR})
15 Verify that z = | +i is a solution of the equation =* + 167 — 34z + 36 = 0.
Write down a second solution of the equation.
Hence hind constants x and f§ such that

167 —Mr+36=(F —az+a)z+ ) (SQACSYS)

16 The roots of the equation 7x — 8x% + 23x + 30 = O are a, 3, .
a) Write down the value of 2 + f + 7.
b) Given that 1 + 2i is a root of the equation, find the other two roots. (NEAB)
17 Derive expressions for the three cube roots of unity in the form re”. Represent the roots on an
Argand diagram.
Let @ denote one of the non-real roots. Show that the other non-real root is er’. Show also that
l+w+w =0
Giiven that
a=p+q f=p+qo
where p and q are real,

p+ qut

-

i) find, in terms of p, zff + fy + y2
i) show that afiy = p* + ¢°
iii) find a cubic equation, with coelTicients in terms of p and g, whose roots are «, fi, 7.
(NEAB)

18 The polynomial f(z) has real coefficients and one root of the equation f(z) = 0 is 5 + 4i. Show
that 22 — 10z + 41 is a factor of f(z).
Given now that
f(z) = 2% — 10z* + 412% + 1622 — 160z + 656,

solve the equation f{(z) = 0, giving each root exactly in the form a + ib. {OCR)
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9 Proof, sequences and series

We must never assume that which is incapable of proof,
G. H, LEWES

We studied some aspects of proof in fnrroducing Pure Mathemartics (pages 515-
22). Here, we will examine proof by induction, including its application to
divisibility, and will revisit proof by contradiction.

Proof by induction

Proof by induction is used when we are given a statement which applies to any
natural number, n.

To prove a statement by induction, we proceed in two sieps:

1 We assume that the statement is true for n = k, and then use this assumption
to prove that it is true fornm =k + 1.

2 We then prove the statement for n = |.

Step 2 tells us that the statement is true for n = 1.

Step 1 then tells us that, when k = 1, the statement is true for n = 2.
Using step | again, when £ = 2, the statement must be true for n = 3,
Using step | yet again, the statement is true for n = 4.

Similarly, step 1 can be repeated for n = 5, n = 6, and so on.

Therefore, the statement is true for all integer n{ = 1).

TS S P
Example 1 Prove that Zr—?ntn - 1)

re= | o
SOLUTION

We assume that the formula is true for n = k. Therefore, we have
&

er%k{k+l}

F=1
, . TS S I - _q
We are trying to prove that Zr = E"[" + 1) 1s true form =k + 1.
|
k1

That is, we are trying to prove that Z r= %[k + ik + 2).
rml

159



CHAPTER 8 PROCF, SEQUENCES AND SERIES

We have
k+l k
Zrzzr+{k+ )th term
ra o |

which gives
k41 1

r=~_;h'k+l}+k+ |

- %y;uw 1)+ 2(k + 1)}

=~2I-[k+ 1)k +2)

= | ,
Therefore, ZI r= En[n + 13yis true form =k 4 1.
When = 1: LHS of the formula = 1
RHSGFIMfﬂTﬂ‘Iuh:éK Il x2=1

-

Therefore, the formula is true for 1 = 1.

Therefore, Z re= %n{n + 1315 true for all n = 1.
r=1

Note In a mathematical proof by induction. it 1s vital that we write these last
four lines of the proof in full.

;]
Example 2 Prove that ) r.rl=(n-+1)! - L.
Fo

SOLUTION

We assume that the formula is true for # = &, which gives

k
Sord=(k+1)-1
rel

Therefore, we have
k41
Zr.r! = (k+ 1)! — 1 + (k + L)th term
k1G4 D+ 1
=(k+ DI+ k+1)1—1
=(k+2k+ 1 —1
=({k+2)-1

L IR R R TR AR RN RIRRRRRRENERTYRERONR O U

Therefore, the formula is true forn =k + 1.
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Whenn=1: LHSof Y rrli=1

r=l
RHSanr.r! =n+N=1=2=1=1
r=1
Therefore. the formula is true for n = 1.

n
Therefore, Zr.r! ={n+1)—=listrueforalln=1.
ro |

H

Example 3 Prove that d {e"sinx) = z%f_-'sin{_f + Lom).

oy

SOLUTEION

We assume that the formula is true for v = k, which gives
d oL B _
(—]F{E sinx) = 2Ietsin{y + '.Ii'h”

Therefore, we have

k41 o
d_k-_l{tr"""l'“ﬂ = i (;?{E'Siﬂ -1-']) = i[ﬁe‘sin{.\' + 1km))
- Ez%e‘sin (x + &anﬁetmﬁlx 4 %R‘M
£

= 2Ie*[sin{x + L km) + cos(x + L kn)]

Using asintl + becostl = Rsin(0 + 2}, we obtain
e K :
. L 3 -4 1 1
e (e*sinx) = 27e*v2sin[(x + L kn) + L =]

= 24k lgvsin[x + L(k + 1)m)

Therefore, ;—ﬂh'ﬂn.ﬂ =ﬂc'5in{x 4 }nr:} is true forn = k + 1.

X

d . .
Whenan=1: —{e"sinx)=e"sinxy+e'cosx
dx
— ol Lo d
= -.,r':‘EL sin{x + )

Therefore. the formula is true forn = 1.

Al
. 2 .. .
Therefore, a"-i-—- (e'sin x) = 27e'sin (x + Lnm) is true for all n 2= 1.
X"

2 1 27 -
E:nmpledlfd=(ﬂ l).proxflhaiA":(ﬂ | )

SOLUTHON

We assume that the statement is true for n = k, which gives

* 2
-
=0 )
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Therefore, we have

2 9k ;.
k+1 _ gk _ £ l 2 1
A =A x.»l.—(ﬂ | )H(l] I)

kel pkwl _ )
k+1 _ o e
= A '_(ﬂ 1 )

Therefore, the statement is true forn =k + 1.

When n = 1, the statement is true.

Therefore, if 4 = (g ;).A”= (%; znl_l)furalln? l.

Divisibility

Proof by induction can also be used to prove that a term is divisible by a
certain inleger.

IS ESI NS ENEENEENEEEEEEEEE NN ENEENEEEEE

Example § Prove that 5" + 2>~ 2371 s divisible by 13.
SOLUTION

Let u, = 5" 4+ 2*-23"-! Therefore, we have

Uy = SHAHD 4 QU+ =230+ 1)1

Expressing u, . | in the powers of w,, we obtain
lyyy = S35 4 229223032
=25% 5" 4 12 x 2223~}
Adding u, and u, . |, we obtain
My 4 gy y = 263 52 4 |3 x 220-230- 1

Both 26 and 13 are divisible by 13. Therefore, since the sum of u, and
i, 51 is divisible by 13, either

both u, and w, ., are divisible by 13, or
both u, and u, , , are not divisible by 13,

When n = 1, uy = 5 + 2°3" = 26, which is divisible by 13.
Therefore, u, is divisible by 13 for all integer n = 1.

It is not necessary to use simply w, . + u, as the term to be divisible by the
required integer divisor. We can add, or subtract, any multiple of w, ., and u,,
as long as that multiple is not the divisor, or a factor of the divisor.

In Example 5, we could have used w, ., — 12u, = 13 x 5. But obviously we
could not use 13u,.; — 13u,, which is divisible by 13, to prove anything about
the divisibility of u, ., or u,.
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PROOF BY

Example 6 Prove that 3% % 4 521 ig divisible by 14.

SOLUTION
Let u, = 3%+2 4 52+ Therefore, we have
Uy i) = FHa+1+2 L gAasl1+]
= 33+l 4 gIgins]
=81 % =2 L 25  §ins]
Note We are trying to prove divisibility by 14. But for the term in 5/,
Hyiy + ty gives (25 +1)5"*" and wu,,, —u, gives (25 = 1)5"*!

Neither 25 + 1 = 26, nor 25 — 1 = 24 are divisible by 14, and so are
unhelpful. However, we can sec that both w,,; + 3, and . — 1u,
make the term in 57! divisible by 14, giving respectively (25 + 3) = 28
and (25-11) = 14.

We need to check that the term in 3**? also satisfies this divisibility:

]

Hpiy — Llu, =81 x 39+2 L 25 5§24l [ (3442 4 520+
=8l x 3+ £ 25 x 5T+ — || x 3W+2 1] x 5+

=70 x 3%+2 4 14 x 524!
which is divisible by 14.

Therefore, either both i, ., and u, are divisible by 14, or both u, ., and wu,
are not divisible by 14,

When n= 1, 3**2 4+ 5741 = 3* & 5% — 854, which is divisible by 14.
Therefore, all u, are divisible by 14.

Therefore, 3% *2 4+ 52+ is divisible by 14 for all n = 1.

Example 7 Prove that 7" + 4" + | is divisible by 6.
SOLUTION
Let u, = 7" + 4" + 1. Therefore, we have
Wy =T 44740 4 ]
=T=T"+4=4"+1
To eliminate the +1, we need to subtract u, from u, .. giving
bUgsj =ty =06xT"4+3=x4"

We cannot use 2u, .,y — 2u,, as this would involve multiplying by 2, which
is a factor of 6, which we are trying to prove is a factor of the given
expression. Hence, we need to show that 3 x 4", as well as 6 x 7", is
divisible by 6:
Wyl —Hy =0 x T4+ 3 x4
=6xT"43x I
=6xT"+6x 2|

which is divisible by 6.
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Therefore, either both u, . | and u, are divisible by 6. or both u, . | and u,
are not divisible by 6.

Whenn=1,7+4"+1=7+4+1 = 12, which is divisible by 6.

Therefore, all u, are divisible by 6.

Therefore, 7 + 4 +- | is divisible bv 6 forall w = 1,

Proof by contradiction

Another way to prove that something is true is 1o assume that it is false, and
then to arrive at a contradiction. (See also Introducing Pure Mathematics. pages
321-3)

Suppose, for example, that we want to prove the statement
There is no biggest integer.

It seems obvious that there is no biggest whole number, but ‘it seems obvious’
is not a proper mathematical proof. One way to prove this statement is to
assume that there is a biggest integer.

Call the biggest integer M. Then M <+ | must also be an integer. Now,
M+ 1 > M. But M was supposed to be the biggest integer. Therefore, we have
a contradiction.

S0 our original assumption is false: there is no biggest integer.
One of the most beautiful proofs in all of mathematics concerns the statement
There are an infinite number of prime numbers

We suppose there are not an infinite number of prime numbers, and prove that
this is nonsense.

Assume that there are a finite number of prime numbers. Then we can write
them down as {p;.ps. ....p:}. The number p; x p, x ... % p, + 1 is not
divisible by any of the prime numbers {p;, p. ..., p,}. This is nonsense because
{pP1. P2y - ... pa} was supposed to be a list of all the prime numbers. This
contradiction tells us that our original assumption is wrong. Hence, there are
infinitely many prime numbers,

Exercise 9A

1 Use proof by induction to prove that Z r o= én{n + 12+ 1).
e

2 Use proof by induction to prove that Z r = inzfn + 1),
e |

3 Prove that 13* — 6"~ is divisible by 7.

4 Prove that 2% + 3*~? is divisible by 5.
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1

12

13

14

15

EXERCISE 94

Itis given that &(n) = T 6+ 1) — 1, forn=1,2,3,...
i) Show that
ofn 4+ 1) — din) = 79 36n + 48)
iy Hence prove by induction that &{n) is divisible by 12 for every positive integer n. {OCR)

Verify that 5° = | (mod 11). Hence find the remainder obtained on dividing 5" by 11.
(OCR)

Use mathematical induction to prove that

Z[r 3= =rn-1

e

for all positive integers n. (AEB 97)

fln) = 24 % 2* + 3% where i is a non-negative integer.

a) Write down fin + 1) — f{n).
b) Prove, by induction, that fin) is divisble by 3. {EDEXCEL)

Prove by mathematical induction that 5 — 1 is divisible by 24 for all positive integers n.
{WIEC)

Prove, by induction, that Z r+3) = %n{n + 1n+5), ne M. (EDEXCEL)

e

]
Prove by induction that Z r= %n{n + 1921 + 1},
r=I

Find the sum of the squares ol the first » positive odd integers. (OCR)

Use mduction to prove that
iﬂtH— = %n{u+ IMn +2)
for all pn;s:llive integers n. (SOACSYS)
Prove by induction that
ilr{n]— Lir 4+ 2) =%n{n+ L3re 4+ 240 + 3) INICCEA)
a) Write down an expression for the ath term of the series
¢ 2 3 n 4

= =

. + + ...
=3 3=x3 5x7 T=9
b) Prove by induction. or otherwise, that the sum, 5,, of the first # terms of the above series is
given by

nln -+ 1)
= (NEAB)
241y
Show by mathematical induction that
1422432 4., +n2 ' =(n=1)2"+1
for all positive integer values of n. (WIEC)
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. o
16 a) Use the resalts z re= %u{n + 1) and z P o= %n:{n + 17 to find an expresston, in terms of
r=1

!.—l

u, for Zr{r — I¥r 4 1), factorising your answer as fully as possible.

r=l

B} Use mathematical induction to prove that

P R S N
mr—=1Mr+ 1) 4 2nin+ 1)

F=l

for all positive integers n = 2. {AERE 97)
17 Use mathematical induction to prove that
ir{r = 1lr+35)= %um 4+ 1= 20 +T)
for all pn;:it}k'e integers n. {AER 95}
18 Show, by means of a counter-example, that the statement

axb=0immplesa==0orb=10
15 false,

-

Find a unit vector m such that m » ( -—2) =), (NEAHB)
|

19 Prove by induction that

Z%‘—l — ! 3 (OCH)
e+ 1)y (n+ 1y

r=1

20 Prove that there is no smallest positive rational number. [Hint Prove this by contradiction.]
21 Prove, by induction, that

E
Zr:{r ~ 1} = ]—l_jnfn —IMn+ 1)3n+2) (EDEXCEL)
Tl | =

22 i) Show thar, if n =k + 1. then
(3m 4+ 2¥n - 1) kY 4 Sk*

r— —r—— e

nin + 1) kik + 10k + 2}

provided k > 0.
i) Prove by induction

il LM —
Z LI €L ), (el ) N

rr—1 min = 1)

Fad

23 Show that 3 r(r+2) = %p. + 120+ 7).

o ]

Using this result, or otherwise, find. in terms of #. the sum of the series
3In24+4m2* +5n2 + . . +(n+2)In2"
Express your answer in its simplest form. (EDEXCEL}
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EXERCISE BA

Consider the sequence defined by the relationship w, . = Su, + 2 whose first term is &y = 1.
iy Show that the first four terms are 1, 7, 37, 1587, ...
ii) Use the method of induction to prove that u, = -%[3{5"' H=1] (NICCEA)

A sequence uy, ty, iy, ... 18 defined by
wy=2 and w,.;=1=2u, (n=0)
a) Prove by induction that, for all # = 0,

U, =

{1-+5(=2)"}

tad | o=

b) State, briefly giving a reason for your answer, whether the sequence 15 convergent.
(NEARB)

Prove by contradiction that if the sum of two numbers is greater than 50, then at least one of
the original numbers must have been greater than 25,

A= (—II g)

Use induction to prove that, for all positive integers n,

1 0
'-!w=(|__zll :'ﬂ)

Determine whether or not this formula for 4" 15 also valid when n = =1. (S0A C5YS)

Let

Prove by induction that, for every positive integer N,

'z" nd® 1 aved
(n+4) 6 (N+4)

=l

Given that, for every positive integer N,

N 5
4.\ 1 < i (_‘i)
(N =4 6\5

show that the infinite series
x4 2x4 3Ix4
- + +..
. 6! L
is convergent, and give the sum to infinity. (OCR)

Let u, v. w be positive integers. For each of the following, decide whether the statement is true
or false. Where false, give a counter-example; where true, give a proof.

iy If wand v both divide w then u + v divides w.

W) If w divides both v and w then w divides v+ w.

i) IT w divides v and v divides w then u divides v + w.

Write down the converse of statement il, and determine whether or not this converse is true.
(S0A CSYS)
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Summation of series

As we have already seen on pages 159-61, proof by induction can be used to
prove that a series has a known sum. Unfortunately, it is of no use when we
do not know the sum in advance. Therefore, we will now introduce two other
methods of summing a series: applying standard formulae and differencing.

Applying standard formulae
On pages 159 and 164, we found that

= 1
==nln+1
;r S+ 1)

Yr= é-nm + D2n+ 1)

l'-1

" r1=l"‘ .
; JTO+ D

We also have

£- (%)

r=1

These four formulae can be used to find the sums of many series.

Note ir is often expressed as i r.
I

r=1

Example 8 Find the sum of Y _ (47 + 1),

EOLUTION

First, we split the given term into its parts, and then use the formulae
above, as appropriate.

"

Note ZI=1+ l+1+...+1=n (towal of n terms of 1)

r=1

Splitting the given term, we have

i{4£+n=4iﬁ il
r=} r= |

=l

which gives

Z{4H+I}=4x%u{u+ IN2n + 1)+ n

r=l

-——-%n{rH- IK2n+ 1)+ n

[2min + 1K2n + 1) 4+ 3n)

L | =
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" o -I
= 4 + 1V =—n[2in + 1H2n+ 1)+ 3
;1 + 1) = 20+ 120+ 1) + 3]
Therefore, we have

"

Y@= %mu’ + 60+ 5)

re

A
Example 9 Find the sum of }:(Ert + 37 4+ 1)
r=1

BOLUTION
Splitting the given term, we have

i{zr‘+3€+n=izr‘+£3€+il
F=1 r=1

ral Fa |
:ziﬁra‘irﬂri:a
r=l r=1 reel
which gives

Z{2r3+3r:+l}=1x%n’2{n-1-l}:+3 :n:%rr{n+ IH2n + 1) 4 n
r=1

[l + 17 +{n+ D2+ 1) + 2]

-

Therefore, we have

L]
Z (2r'+3F +1)= f_}!{ﬂ} 4 4+ 3)
=1 -

Example 10 Find the sum of Z (4r' - 3).

[ 1. 3!

SOLUTION
Splhitting the given term, we have

i {4r3-3}:§{¢r‘-3}-i{4r3-31
r=| re |

re=gdl
which gives

i {4r3—3}=4ir!—3i| - (4ir3—3il)
=T ] |

1 |

=4 = %[Enf[l“:+ 1 ~3x2n— [4 = -;-rr:{J: + 1) - 311]

=4 (2 + 1 = 6n —ni(n+ 17 + 3n
—dfd +dn+ D) =P + 20+ 1) = 3n
= (150 + 14n + 3) = 3
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Therefore, we have
In
D @ =3)=150"+14n" + 30" - 3n

rem+

B
Example 11 Find Z (r +2).

Fa]
SOLUTION

Sphitting the given term, we have
8 8 8
D (P+)=3 r+32
ral 1 1
Using

yor =-]§n[n+ 1) (2n + 1)

r-l

and remembering that z | = n, therefore Z 2 = 2n, we obtain

r= rml

z-:[r3+2}=%n[n+ [)M2n + 1)+ 2n

Now, n = 8, therefore,

]
Z{H+1}=%x3x9xn+1ﬁ=uﬂ

l-l-l

Hence, we have

Zs:{r’+2]=22ﬂ

Exercise 9B

1 Find ) (27 +2n). 2 Find ) (27" +1).
r=1 r=1

3 Find Y (r+ 1)r - 2). 4 Find }_ (2r - 1)(r + 5).
re=| re ]

5 a) Show that Z-:{lr = 2r+3) = %n{d.ui + 12n—1).

ra=1]

35
b) Hence find 3 (2r — 1)(2r +3).  (EDEXCEL)
r=S
6 Given that n 1s a positive integer, find Z (2r — 1)°, giving your answer in its simplest form.
r=| (EDEXCEL)

] 30
7 Show that Zr{lr +1)= é-n[n + 1)(4n + 5). Hence evaluate Z r(2r+1). (EDEXCEL)

rm| r=10
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SUMMATION OF SERIES

B8 Write down the sum
N N
>
A=l
in terms of V. and hence find

P =2+ P - 4. -2V

in terms of N, simplifving your answer.  (OCR)

Differencing

Some series can be summed using partial fractions (see Inrroducing Pure
Mathematics, pages 280-89). The basis of this method is that most of the terms
cancel out.

Example 12 Find z

—rr+1)
SOLUTION
First, we write D as the sum of partial fractions:
r+
11 1
kr+1) r r+1l

Hence, we have
i 1 _ : (_1__ 1 )
rir+1) ror+1

r=|
=(1-_XV(¥_1y ¢ (X-1 L Ny (¥-1
_(I ?)+(3 3)+(3 4)+M+(n-—l .n)+(n n+|)

We notice that all the terms except the first and the last cancel one
another. Therefore, we have

Example 13 Find S Z
am mn _—_—
. ) Dy

SOLUTION

.
First, we write ——————— as the sum of partial fractions:
rr <+ 1)r+2)

2 1 2 1

PR TRl
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s Hence, we have

w

] 2 2 ~f1 2 l

" _— = - +

. ;r{r+t}{r+2} Z‘(r r+1 r-é-l)

»

- T 3

: (12 D)+ (-2 D)« (V-2 D)

. 2 A3 2 3 4 i 4 5

-

- IV 2 1) ( 1 2 |)
+r-F++) 4.+ el el B

- (4 5 06 n~2 n~1 'n

L |

| |

" I 2 | 1 2 i
+|——~-F4+ +|+- +

E (n—l n n+l) (n n+ 1 rhl)

o

. Note Do not redece [ractions to their lowest ferms, since this obscures

= the cancellation which should oceur,

E We notice that almost all the terms cancel one another. We are left with

[ ] L]

2 2 1 ] . 1

- —_— =] -—-=4—4 — 4

- ,Z;r{r+”{r+3} 272 a4l n+l n+2

: N S

" 2 n4+l1 n+42

Example 14 Use the identity r = %[rlr + 1) = (r — 1] 10 find the
sum Zf‘r
r=]

SOLUTION
Making the given substitution, we oblain
m n l
r= =|rr+1)—1(r— 11
22!

=

il :-c’.l-ﬂxl}-’r%{?.x}-ixZ}-b-%{Sx-ﬁl-Zx3]-4-...

P | =

[(n— 1 —(n—2)n- I:I]*%[H{ﬂ' + 1 —in— 1w

bk | =

.+.

We notice that almost all the terms cance! one another. We are left with

Zr = %[—l] x | +nin+ 1))

resf

=%n{n+ §]

Note This result was also found on pages 159-60, using a different method.
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EXERCISE 5C

Exercise 9C

1 Verily the identity
r—1  2r+1 _ 2
Hr=1  wr+1) (r=Dir+1)
Hence. using the method of differences, prove that

i 2 _ 3 i+l
fr=NDr=1} 2 nin+1)

Deduce the sum of the infinite series
-I—+—L+-—t—+,..-—-—-——1————--*... (AEB 98)
1.3 24 35 im— L+ 1)
2 Show that
1 i 2

—

Hr+1) (r+10r+2)  rr+ r+1)
Hence, or otherwise, find o simplified expression for

Z—]— (WIEC)
e 1Hr4 1)

ro

1 . e
3 a) Express oI in partial fractions.
b} Hence. or otherwise, show that
— 1 B an + b
bt (r — WN2r 4+ 1) (20— 1)dn 5 1)

where @ and b are integers to be found.

re=Jn
. .y i
¢) Determine the limit as n — o of E

. iNEAB)
= (2r = 1H2r+1)

4 Find the value of the constant A for which (2r + 1)° — (2r = 1F = Ar.

Use this result, and the method of differences, to prove that

n

Zr e T'}rn{l: + 1) LAER 90)

re=

1 . . .
5 Express in partial fractions.
2r 4+ IH2r 4 3)

Hence find the sum of the series
I e J T » I
Ixws 5=7 {20 = 1)2m+ 3}
Show that the serics
; + L + ...+ L -
Ix: 5=7 (2n 1020+ 3)
is convergent and state the sum to infimity. (OCR)
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6 Venfy that
1 I X
l+n=1x 1+nx {1+ (n—1)x}H]l+ nx)

Hence show that, for x :,é i,
Z >
{1+ n=—~lh}{|+m'] 1+ Nx

Deduce that the infinite series

| | I i
1 x3 % x 2 2 X5
is convergent and find its sum to infinity. (OCR)

7 Leta, =e "' — e where x £ 0.

N
i} Find z i, in terms of N and x.

ii) Find the set of values of x for which the infinite series
+a+as+...
converges, and state the sum to infinity. (OCR)

& Given that

1 |
Vi2n=1) 2n+1)

express Z i, in terms of N.

n=25

Deduce the value of Z (7 (OCR)
= 25

9 Show that
r 1 1

r+1) A (rx 1)
Hence or otherwise, evaluate

= r42
]z{ + I mZ{r+l]!

!:-'I F-l-]

giving your answer to part il in the terms of e. (NEAB)

10 a) Show that
r+1 roo_ 1 R
r+2 r+l  (r+ ir+2)
b} Hence, or otherwise, hind

- |
g[r-!- IXr+2)

giving your answer as a single fraction in terms of n. (EDEXCEL)
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CONVERGEMNCE

Convergence

As we found in geometric progressions, an infinite senies 1s the sum of an
infinite sequence of numbers (see fntroducing Pure Mathemarics, pages 248-30).
For example, we have the infinite geomeltric progression

| ] 1
E+::+...+F+...

s
When we state that an infinite series Z a; converges, we mean that the sums
n k=0
Sy = Z“* have a limit as n — ~c.
k=0
We say that an infinite series diverges if it does not converge.
When a series diverges, it could behave in one of the following ways.

s Diverge to +oc; forexample: 1+244+8+16+...

e Dnverge to —oc; for example: —-1-2-4-8-16—...
o Oscillate finitely; forexample: 1-1+1-1+4+1-—...
e Oscillate infinitely: for example: 1 -2+4-8+16 - ...

D’Alembert’s ratio test

.
D'Alembert’s ratio test states that a series of the form z:.-, converges when

The test also states when hm

o — R

=10

'ai-
Satl) -

gy

ﬂ.,.

is greater than 1, the series diverges.

iy

LS
iy

It does not imply anything when lim —J1 If

o

Example 15 Prove that the series ZLI converges for all real values of x.
n!

As n — oo, this ratio has a limit of zero regardless of the (real) value of x.

Therefore, the ratio test implies that the series converges for all real values
of x.

L
L]
L]
: me=0
s SOLUTION
. M

.. . | e
s First. we find the ratio F.L..L . Then we find its limit as n — oc.
L] | iy
]
. Hence, we have
s n

X

L]
. a1 _ ({n+ 1}
. O ET
]
= n:
L]
L]
L] — +
]
. el
L]
L]
L]
L]
L]
]
L]
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Note The series Z % is Maclaurin’s expansion for e* (see page 178) and 1s
k=0 ™

therefore known as the exponential series. That is,

= x*

e =) —
=k

R
Example 16 Prove that the series Z — does not converge.
n

ne=|
SOLUTION

Applying d’Alembert’s ratio test, we obtain
1

Guia| _ |+ _ n
iy 1 n+1
n
which gives
N [ . . i
lim ==L = lim =1
Ll i m=cc 4 |

Thus, in this case, d’Alembert’s ratio test fails, because it does not
establish whether the series converges or diverges.

To prove that the series does not converge, we write out its first few
terms:

= | 11, 1.1.1.1.1
o T2T3TatsYETT e

Now, the first term is greater than 1.

The second term is 4.

The sum of the next two terms is greater than { + =1

The sum of the next four terms is greater than § + ¢ + ¢+ +1 =1,

Similarly, the sum of the next eight terms 1s greater than eight times ﬁ.‘
which is £.
This pattern keeps repeating. We can always increase the sum by more

g

than § by adding the next 2* terms. Therefore, zl exceeds any
ne n
pre-assigned real number L. Hence, it cannot converge to L, and so it

diverges.

Even though each term is less than the preceding term, and the terms tend
1o zero, the sum is not finite.
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MACLAURIN'S SERIES

Maclaurin’s series

Assuming that fix) can be expanded as a series in ascending positive integral
powers of x, we can deduce the terms of the series, as shown below for sin x,
cosx, ¢ and In(1 + x). These four expansions are needed frequently and
therefore should be known.

Power series for sin x

Let sinx = @y + @, x + a:x* +a;x° + ..., where the a's are constants.
When x =0, sin0 = g But sin0 = 0, therefore a; = 0.
Differentiating sin x = a,x + a»x* + a3x” 4 ..., we obtain
COSX = @) + 2a:% + 3a:x” + dayx’ + ...
When x =0, cos0 = ay. But cos0 = |, therefore a; = 1.
Differentiating again, we obtain
—sinx =2a; + 3 % 2y x + 4 % 3a + 5 x da +...
When x=0,s5mnl0=2a, = a,=0.
Differentiating vet again, we obtain
—cosx=3x2ay+4x3x2ax+5x4x3ax’ + ...

When x =0, —cos0=3x2a; = a3=- l !

Ix2x1 3
Repeating the differentiation, we obtain
' I
ﬂ"=u Hﬁ=§ ﬂ'ﬁ,=l] .|l:;‘-l|=_ﬁ
Therefore, we have
L ] 7 et |
sinx=x-X 45X, GEUx"
3! 5§ M (2n+ 1)

By d’Alembert’s ratio test, this series converges for all real x.

Power series for cos x

We can use the procedure for sin x to find the power series for cos x. However,
it is much easier to start from the expansion lor sin x. Hence, we have

d . d o ox oy
Cosx =——sinx = (.'c + +)

which gives

A (=1 x>
cns_x-l—i+m—m+...+ 2! +

By d’Alembert’s ratio test, this series is convergent for all real x.
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Power series for e*

Let e* = ag + ajx + @3x° + a3x° + ..., where the a’s are constants.
When x =0, ¢’ = ay. But ¢” = 1, therefore a; = 1.
Differentiating €* = a,x + a@:x° + a3x” + ..., we oblain

e =a; + 2mx + 3oy +dag’ + ...
Whenx=0,e"=a, = a =1.
Differentiating again, we obtain

e =24+ 3 x 2a3x +4 x Jagx? + 5 x dag + ..
Whenx=0,e"=2a; = ;=41
Differentiating yet again, we obtain

E=3x2a;+4x3x2ax+5x4x3ax+...
T
Ix2xl 3
Repeating the differentiation, we obtain

L A B | I
“B=q BT T w Bk

Therefore, we have

Whenx=0,e"=3x2a, = a =

. £ 0 P 0
e -—-|+."&‘+E+i1‘¥+§+”.

By d’Alembert’s ratio test, this series converges for all real x.

Power series for In(1 + x)

Since In0 is not finite, we cannot have a power series for In x. Instead, we use a
power series for In(1 + x).
Letin(l + x) =ay + ayx + @ + a3 + ...
When x =0, In | = ay. But log | = (0, therefore a, = 0.
Differentiating In(1 4 x) = a;x + @;° + asx’ + ... , we obtain
1
1+x

= ay + 2a1x + ﬂﬂ}'(} +4:‘J'4A'] PO

However, using the binomial theorem, we can expand | as (1 +x)" to

+ X
give | —x+x* —x'+ " —x +.... Hence, we have

l-x+2-2+x*-F+...=a+2ex+3a+4a’ +...
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Equating coefficients, we obtain ay = 1, a; = —"11.:. gy = a',— iy = ==, ....

Therefore. we have

R e B
In(l +x)=x-2+X X X _
( ) 2 3 4 5

Using d'Alembert’s ratio test, we obtain

v
: LES .| omx
lim |==L| = lim = lim |——| = |x|
n—x| g a—oa| X o=+ |
i

Thus, when |x| < 1, the series converges. By inspection, we notice that the
expansion is valid when x = 1, but not when x = = 1. Hence, we have

ln{l+_r]=_r—'—+——'—+;—... for -1 <x<1

n(l-x)=-x->2-2_X T for-lgx<l

Summary

The general result of this method for obtaining the power series of functions is
known as Maclaurin’s series, and is expressed as

f(x) = f(0) + xf'(0) + :—“f"m] + if”'{ﬂ} +...

L 3

Exercise 9D

EXERCISE %D

1 a) Show that the first two non-zero terms in the Maclaurin expansion of sin™'x are given by

Sin-xX=x+—+...

b) By writing x = 4, deduce an approximation to x as a rational fraction in its lowest terms.
¢) The equation sin™'x = 1.002x is satisfied by a small positive value of x. Find an
approximation to this value, giving vour answer correct to three decimal places. (WIEC)

2 i) Use Maclaurin’s theorem to derive the series expansion for log.(1 + x), where -1 < x <1,

giving the first three non-zero terms.

i) If log.(1 + x) = x(1 + ax)’ for small x. find the values of a and b so that the first three non-

zero terms of the series expansions of the two sides agree. (NICCEA)

3 a) Find the first three derivatives of (1 + x)* cos x.

b) Hence, or otherwise, find the expansion of (1 + x) cos x in ascending powers of x up to and

including the term in x*.  (EDEXCEL)
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4 i) Use Maclaurin's theorem to derive the first three non-zero terms of the series expansion for
S0 X,

i) Show that, for sufficiently small x,

iii) Show that when x = % the error in using the approximation in part ii 1s about 0.2%.
- (NICCEA)

§ Show that the first two non-zero terms of the Maclaurin series for In{1 + x) are given by

-

X
In(l 4+ x)=x ral TP

a) Use the series 10 show that the equation 3In{]1 + ¥) = 100x° has an approximate solution
x = 0,03
b) Taking x = 0.03 as a first approximation, obtain an improved value of the root by two

applications of the Newton-Raphson method. Give your answer correct to six decimal
places. (WIEC)

6 Given that y = (1 + sin x)e’, find i; and show that d—: = (1 + 2cos x)e".
X X

Hence, or otherwise, prove that the Maclaurin series for y. in ascending powers of x, up to and
including the term in x* is

3 .
) 4+ 2v 4+ —x°
2

The binomial expansion of (1 -+ ax)” also begins | + 2x %xz, Find the value of the

constants a and n. IAEB 97)

71 Use Maclaurin's theorem to find the values of A, B, C and D in the series expansion
5 7
tan'x = A+ By + CF + D} + X
5 7
where -1 < x < L.
i} Find, using the binomial expansion, the first three non-zero terms of the series expansion, in

ascending powers of u, for

- "

+ W
iily Using the series in part i, evaluate

j I1du
o b+ uw

as a series expansion in ascending powers of x,
iv) Explain briefly how the series expansion in part | can be derived from the result in part iii.
(NICCEA)

8 Given that

y =secx+tanx  —

B2
A
=
A

I\.ll-|?|

y>0

180



EXERCISE 3D

show that
a) F}}; = —I-t-.yxt
de 2 '
dy 1
b) —— = —ysecx(secxy + 2tanx)
) dvt 47

Given that v is small and that terms in x* and higher powers of x may be neglected, use
Maclaurin’s expansion to express y in the form 4 + Bx + Cx°, stating the values of 4, Band C.
(EDEXCEL})

9 Given that fix) = (1 + x)In{l + x).

a) find the fifth derivative of fix)
b) show that the first five non-zero terms in the Maclaurin expansion for f{x) are

¢) find, in terms of r, an expression for the rth term (r 2 2) of the Maclaurin expansion for
fix).  (WIEC)

10 a) ) Given that v = In(2 + x7), find -:-:'—T and show that
&y 4-24 '
de (24 2%

i) Deduce the Maclaurin series for In(2 + 1) in ascending powers of x, up to and including
the term in x°.

b) By writing 2 + x* as 2(] + {x*) and using the series expansion
s
In(l + 1) = f—?"r?—...
verily your result from part a and determine the next non-zero term in the series for

(2 + ). (AEB97)

11 1) Use Maclaurin’s theorem to derive the first five terms of the series expansion for (| + x),
where -1 < x < 1,
i) Assuming that the series, obtained above, continues with the same pattern, sum the
following infinite seres

3 3 2.5
ol 12 125 1258

- - +...  (NICCEA)
6 612 61218 6.12.18.24

121§ Use Maclaurin's theorem to derive the first five terms of the senies expansion for .
Consider the infinite series

I 4 7 10
— =4 —F+—4+...
TR TR TR

ily If the series continues with the same pattern, find an expression for the sth term.
i) Sum the infinile series. {(NICCEA)
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Using power series

The series studied on pages 177-9 are used in a number of situations, including
the two which are discussed below

Finding the limit of fx) as x — 0, when f(0) = g(0) = 0

g(x)
. . . fioy 0 .
If we simply insert x = 0, we obtain ﬁ =0 which means that we have
E
proceeded incorrectly.
Example 17 Find the limit of =05 g5 x — 0,
et = 1)

SOLUTION

To find such a limit, we expand the numerator and the denominator of
the expression each as a power series in x and divide both by the lowest
power of x present. Then we put x = 0.

Hence, we have

o X ) X X
—
kL.

X— |-t —...
x—sinx ( il

o2ler-1)

1 ..'I.': 3 'I.A
r(l +.'r+E+...— I) X +E+“'

Dividing the numerator and the denominator by x*, we obtain

———+
x—sinx 3! 3
e -1) x ¥
1 + 5 + F e
Therefore, we have |

lim X —snx _E _1

—=0xier=1) | 6
L] -_—
*  Example 18 Find the limit of -—2% a5 x 0,
. sin"x
[ |
i
=  Expanding the numerator and the denominator each as a power series, we
=  obtain
.
. < xr X

1-{l-=4+—=- ———+

: | -cosx _ ( 27 )_,, Il
™ ‘nI - T L 2y
: R D IS
» 3o 3



US5ING POWER SERIES

*  Dividing the numerator and the denominator by 1, we obtain
. .
. T
B l —cosx 24
L] T - L]
. sIn°x | 2x
. 3
=
= Therefore, we have ,
L]
- —
. - l—cosx 2 1
= m ——=—=—
s U gintx 1 2
L'Hopital's rule
. . fix .
When evaluating the limits of some forms of 1: 1'; the use of power series is
gy

not appropriate and so we apply FHopital's rule, which states that if
fla) = gla) =0, and g'(a) # 0, then

. fix) )
veew gy glla)

=1

If 2'(a) = 0. we repeat the procedure until we find a derivative of g(x) which is
not zero when x = a.

Thus, if fia) = gla) = 0 and g'{a) = 0, but g"{a) # 0, then

[ tim 1) _ iy £ _ (@)
¥ ==y E{-'.-j = g gf"l.". grl“_:'

Example 19 Find lim ad

SOLUTHOMN

We notice that both the numerator and the denominator are zero when
x = 1. Hence, we have, afler differentating both the numerator and the

denominator,
oxt =T 8t =2 L A= 20x 16
lim ; = lim 2
o 4 Sy — 6 £ =1 Jxs 45
A 3 g 2
- I.m X ?-‘ + aX i _l: —“.I:ﬂ
=1 oy 4 s -6 8

Finding {(x) for small x

Example 20 Expand tan x as a power series in x as far as a term in x°.
Hence find the value of 1an0.001 to 15 decimal places.

SOLUTION

We express tan v in terms of sin v and cos x. and expand each as a power
serics. Hence, we have
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We rearrange the above Lo give

SV N (N

and then we expand the second bracket, using the binomial theorem and
ignoring terms in x° and higher, to obtain

tanx = [:r—-;ﬁ+—xj— —..,}[l+'ﬁ—£+...+ (ﬁ—£+)‘+]

120 2%
L S S
=Xttt
2 24 6 12 120

Therefore, we have

tanx = x + 420 + = x* +.
X=X 3 IST

Hence, tan 0.001 is given by

5
tan 0.001 = 0.001 +-% = 0,000000001 +ﬁ > 0.000 000 000000001 + ...

That is,
tan 0.001 = 0.001 000000333333 to 15dp
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POWER SERIES FOAR MORE COMPLICATED FUNCTIONS

Power series for more complicated functions

We can combine power series for simple functions to make power series for
more complicated functions, as demonstrated in Examples 21 to 24

Example 21 Find the power series for cos x°.

SOLUTION
The power series for cos x is
- 4_ Lm
X~ oox (=1} -
cosx=1-"—+4-——...+ L
a4 {2n)!

To obtain the power series for cos x*, we replace every x in the above
series with x= to obtain

(Y )

—H-

- i-—-l}n e
cos = | - = N e 1 s
COS X | 51 + 2 Ty x7)
:|_£+£_._+—'_”Hf‘"
24 {2}

Since the power series for cos x is valid for all real values of x, we know
that the power series for cos x* is valid for all values of x7, i.e. for all real
values of x.

Example 22 Find the power series for In(l + 3x), stating when the
expansion is valid.

SOLUTION

In the expansion for In(1 + x},
%3 L
. SR
In{l + x) = x 5 - 3

we substitute 3x for x, which gives
(3xY | (3x)'

Inil 4 3x)={3x)— T + ]

=3v— =X + 0 — ...

[ RV~

Since the expansion for In(1 + x) is valid for =1 < x < |, the expansion
for In({1 + 3x)is valid for =1 < 3x <l ie. -4t <x =

Therefore, we have

SN FE AR N EEE RN NN FEEFETAANFAEENENE EE N

9 3 1
(1 -+ 3.1:}:3.\:—5.1 +0x - ... for —if.,tsa 3
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Example 23 Find the power series for e*'sin 3x, up to and including the
term in x*,

SOLUTION

Since we are asked for terms only up to x*, we do not need to consider
terms in higher powers of x.
The power series for e” is
. ®x 2 X
e = |+I+E+E+¥+.”
Therefore, the power series for ¢** is
(@40’ | (@' @0
T TR TR
Similarly, using the power series for sin x, and replacing x with 3x, we
obtain the power series expansion for sin 3x:

e =1+ (4x) +

N (3x)' | (3x)°
5|n3.r—[3:r}—T+ 5
Therefore, the power series for ¢ sin3x 1s
P I G O G R G (3x)’
[ sm]_\'_[1+(41]+ T - 3 - T + ... (jx]uT...

2 2 2
= (l + dx + 8.'-.’+3T.\'3+3T:r4+...)(3_r—2.\3+.._

Ignoring terms in x* and higher powers, we obtain
e sin3x = 3x + 126 + 24 — 2 4 32 - 18x°

Therefore, we have

Msindx = 3x + 12 + :”;-f + 14x

Example 24 Find all the terms up to and including x* in the power series
for e*"*,

SOLUTION
Using the power series for e*, we obtain
- Y a
Sy simex sl nJ_r
I 2 k)

We now apply the power series for sin x, Since we are asked for terms
only up to x*, we can ignore terms in higher powers of x. Therefore, we
have ,

ﬂ'ﬂ.ﬂ.'l' — 'I +

e =]+

1! 2! 3!

x? x Y X :
I_i-l.-.“ (.'f—'i"r..,) (.T—i-l‘-...)



EXERCISE 8E

m - A
] 32 -t .
m i . - - k 4
si X ! X X
. = 20N =14 '{——-+_1.3‘ .r—_...g-..Tq
. R T |
. ¥ .
s  which gives
o
» - ,,|-¢
- e
b
=

Exercise 9E

1 Find the power series of each of the following,

a) sin2x b) cos Sx c) e
d) Infl + x%) e} In(l — 2x)
2 Find the power senies of each of the following, up to and including the term n a*,
a) sin x* b} (1 + x)e™ €) (2+ xJcos 3y
d) ¢’ e) In{! + cosx)

3 Find out whether the following infinite series converge or diverge.

X gn X W3

H=2

4 Find the power series expansion of cos x*. Which values of x is this valid for?

5 Find the power series expansion of &*

> -
ny . . ,
6 You are told that y = E TR When does this series converge?
rn=all

7 Given that |x] < 4. find. in ascending powers of x up to and including the term in x*, the series
expansion of

a) (4 — x) b) (4 — x}'sindy  (EDEXCEL)

8 a) Find the first four terms of the expansion, in ascending powers of x, of
2+3x)" Ix<i

b) Hence, or otherwise. find the first four non-zero terms of the expansion, in ascending
powers of x, of

sinlxy >
X £ EDEXCEL
24 3x I < ! [ 4
n .
9 cos (Z.T + ?) = peos 2x + g sin 2x

a) Find the exact values of the constants p and g.
Given that x is so small that terms in x* and higher powers of x are negligible,

b) show that cos (11‘ + %) = ——V3Ix -2, (EDEXCEL)

!
2
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CHAPTER 8 PROOF, SEQUENCES AND SERIES

10 The function [ is defined by
f{x) = e — (1 + bx)?
where a and b are positive constants and [hx| < |.

a) Find, in terms of a and 4, the coefficients of x, »° and & in the expansion of f{x) in
ascending powers of x.

b) Given that the coefficient of x is zero and that the coefficient of X~ is ;
i) find the values of @ and b )
ii) show that the coefficient of x* 15 ~ : (NEAB)
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10 Hyperbolic functions

In the 1760x Johann Heinrich Lambert gave @ very nice presemiation in terms af the paramerrization
of the hyperbola, by analogy with such a rearment of the sine and cosine on the circle.
IVOR GRATTAN-GLINNESS

Definitions

The hyperbolic functions, of which there are six, are so named because they
are related to the parametric equations for a hyperbola.

We begin with the two functions hyperbolic sine of x and hyperbolic cosine of
x, which are written

sinhxy and coshx

They are deflined by the relationships
sinhx = %{J:* —g )

1 _
cosh x = ;{::‘ +e¢7 ")

In a similar manner to ordinary trigonometric functions, we have

X

sinhx e"—e¢

tanhx = =
coshxy e'+e®
1
cosech x = —
sinh x
1
sechx =
cosh x
1
cothx =
tanh x

By convention, we pronounce sinh as “shine’, tanh as ‘than’, (co)sech as
(co)sheck” and coth as ‘coth’,

Example 1 Find a) sinh 2 and b} sech 3.

SOLUTION

a) Usually, you would use a calculator to find sinh values. Not all
calculators operate in the same way, so you must first consult your
calculator instructions to learn the correct order in which to press the
hyperbolic (hyp) key, the sin key and, in this case, the 2 key. Your
answer should be 3.6268. ..
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CHAPTER 10 HYPERBOLIC FUNCTIONS

Otherwise, you would have to evaluate sinh 2 using the relationship
sinh2 = L (e? — &)

and putting in the values of ¢ and e, which you either obtain from

tables or calculate from the exponential series.

b) Again, you would normally use a calculator with the relationship

sech3=——=—1 __ (o4dp)

cosh3  10.0677
Therefore, sech 3 = 0.0993, to four decimal places.

Graphs of cosh x, sinh x and tanh x
y = coshx

We obtain the graph of y = cosh x
(shown on the right) by finding the
mean values of a few corresponding
pairs of valuesof y =e* and y = e,
and then plotting these mean values.

» = sinh x

To produce the graph of y = sinh x
(shown on the right), we find half the
difference between a few corresponding
pairs of values of y =e* and y =7,
and then plot these values.

¥ = sinh 1
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STAMNDARD HYPERBOLIC IDENTITIES

¥ = tanhx )
We have tanh x = sish %, which gives 1 = fanh
cosh x y =
tunh = E:.u
e+ ")
_ =ty |1 _I [#] T T v
= nmhx:] 2 - - : :
- ¢ L

Therefore, tanh x < 1 for all values of x,
amd 45 x — +oo. tanhx — 1L

I

Since lanh x = = tanhx = =1

—.
+ =

for all values of x, and as x — -0,
tanhxy — —1.

Hence, the graph of v = tanh x lies
between the asymptotes v = 1 and y = - 1.

Standard hyperbolic identities

From the exponenual definttions for cosh x and sinh x, we have

' ]
cosh*x = [;Ec“ Fe )

il

=g+ 2re™) il
and sinh’y = %{c"—c ‘}]

__l S L 4

d{L 2+¢ 7] |2

Hence, subtracting [2] from [1]. we obtain

- . el ] - .
cosh*x — sinh*x = I{c“" + e

Therefore, we hive

cosh*x = sinh"x = |

Notice the similanity of this hyperbolic identity with the usual trigonometric
identity cos’x + sin“x = 1. See page 213 for Osborn’s rule, which will help vou

o recall the standard hyperbolic identities.

Dividing cosh’x — sinh®x = 1 by sinh®x, we obtain

cosh*xy  smmh'x _ 1

—— e . B

sinh*x  sinh"x sinh'x
which gives
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CHAPTER 10 HYPERABOLIC FUNCTIONS

[ coth’x — 1 = cosech’x

Similarly, dividing cosh’x — sinh’x = 1 by cosh®x, we obtain
cosh®y  sinh’x _ 1
- — 5=
cosh’x cosh’x  cosh’y

which gives

[ 1 — tank’x = sech’x

Differentiation of hyperbolic functions

To differentiate sinh x and cosh x, we use their exponential definitions. Hence,
for sinh x, we have

(e* +¢ .1.}

P | =

From the definitions, we know that
%[e' +e ) =coshx

Thercfore, we have

[ j— sinth x = cosh x
dx

d ._ii N —-I- gt

From the definitions, we know that

I W
7'

-

— ¢ ") = sinh x

Therefore, we have

d )
— cosh x = sinh x
[ dx
To differentiate tanh x, we use the identity
sinh x
tanhx =
cosh x
which gives
d tanh x = g snhx
dx dx coshix
cosh x cosh x — sinh xsinh x . .
= — (using the quoticnt rule)
cosh*x
_ cosh®y — sinh’x
cosh’x
|
= 5 = mh Ly
cosh™x
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INTEGRATION OF HYPERBOLIC FUNCTIONS

Therefore, we have

[ Ed: tanh x = sech’x

To differenuate functions such as cosh ax, again we use the exponential
definitions. Hence. we have

i d 11 .
I"I r o= Rl P o R
o cosh ax prm [1 fe* 4 ¢ }]

|
= ;im’“ - ge %)

From the exponential definitions, we note that

i [é e — -u:""'}] = asinhax

Therefore, we have

d ,
— goshax = asinh ax
X

Similarly, we have

i sinh ax = acosh ax
"
d 3
—— lanh ax = asech’ax
X
] '
z Example 2 Find % when v = 3cosh 3x + Ssinh4x + 2cosh*7x.
x X
s soLuTioN
u
= To differentiate cosh*7x, we express it as (cosh 7x)* and apply the chain
" rule. Hence, we have
' ]
. ? = 9sinh 3x + 20cosh4x + 2 x 4 x Tsinh Txcosh’7x
] X
: = 9sinh 3y + 20cosh4x + 36sinh Txcosh*7x

Integration of hyperbolic functions

From the differentiation formulae given on pages 192-3, we deduce that

I .

cosharvdy = — sinhax + ¢
i

[ 1

sinhaxdy = — coshax -+ ¢
i

y ]
sech’exdy = — tanhax 4+ ¢
=1 J e
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CHAPTER 10 HYPERBOLIC FUNCTIONS

Example 3 Find sz sinh 4x + 9sech®3x) dx.

SOLUTION

Splitting the given integral into two parts, we obtain

S )
Jlsinh4xd.t - I-Elscch‘ltd.r = i cosh 4x +; tanh3x +¢

=1 cosh4x + 3tanh3x + ¢

Inverse hyperbolic functions

We define the inverses of the hyperbolic functions in a similar way to the
inverses of the ordinary trigonometric functions. Hence, for example, if
y = sinh'x, then sinh y = x. Likewise for cosh™'x, tanh ™' x, cosech™'x,
sech™'x and coth™'x.

Sometimes, these functions are written as arsinh x, arcosh x etc.

Sketching inverse hyperbolic functions
The curve of y = sinh ™' x is obtained by reflecting the curve of v = sinh x in the
line y = x.

To draw the curve with reasonable accuracy, we need to find the gradient of
v = sinh x at the origin. Accordingly, we differentiate y = sinh x, to obtain

dy

— = cosh:
dx ‘
Thus, at the origin, where x = 0, we have
dy
— =cosh0 =1
dx €

That is, the gradient of y = sinh x at the origin is 1.
We now proceed as follows:

e Draw the line y = x as a dashed line.

e Sketch carefully the graph of y = sinh x,
remembering that y = x is a tangent to
¥ = sinh x at the origin.

o Reflect this sinh curve in the line y = x.

¥ = sinh™" x
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INVERSE HYPERBOLIC

Similarly, we can sketch any other inverse hyperbolic function: that is, by
reflecting the curve of the relevant hyperbolic function in the line y = x. In
each case, we must find the gradient of the hyperbolic curve at the origin.

Take, for example, y = tanh x, which gives

dy = sech’x
dx

At the origin, where x = 0, we have
dy 2 I
—— = sech*0 = —=
dx cosh 0

That is, the gradient of y = tanh x at the origin is 1.

Also, we know that y = tanh x has asymptotes y = | and y = —1. Therefore,
because v = tanh™'x is the reflection of y = tanh x in y = x, y = tanh™'x has
asympiotes v = | and x = = 1.

Y J'll-q;nh 'y i 'I--.:li..'J
24 :
]
¥ -
i
i -
PO - SYUSPUUPU 1 ORI S
¥ = tanh x
'
Li } T "':
-3 =] 0 | 7 1
.'r :
v = tanh x 5 '
-------------- !'11- T TR T -!-
- _I ¥
1
¥ = tanh~ &
-7

Example 4 Solve the equation 2cosh’x — sinhx = 3.

SOLUTION
Using the identity cosh®x — sinh’x = 1, we obtain

2(1 +sinh’x) —sinhx —3=10

= 2sinh’x —sinhx—=1=10
We now factorise this 1o obtain

(2sinhx+ isinhx = 1) =0

= sinhx=1 or -1
= xv=108814 or -04812

185

FUNCTIONS



CHAPTER 10 HYPERBOLIC FUNCTIONS

Exercise 10A

1 Evaluate each of the following. giving your answer i) in terms of e and i) correct 1o three
significant figures.

a) cosh 2 b) sinh3 ¢) tanh4

2 Starting with the definitions of sinh x and cosh x, prove each of the following identities.

a) cosh (A4 + B) = cosh A cosh B + sinh A sinh 8
b) sinh(A — B) = sinh A cosh B — cosh Asinh B

¢) sinh A + sinh B = 2sinh ("' ; B) cosh (A%E)

3 DifTerentiate each of the following.

a) cosh 2x b) sinh 5x c) tanh 3x
d) 2cosh4x — Ssinh 3x e) 3cosh 2x + 6sinh 5x f) cothx

g) sech x h) 3cosh 3x i) 2sinh*8x
I Incosh x k) gnrhic 1) Intanh 5x

4 Integrate, with respect to x, each of the following.
a) sinh 3x b) coshdx ¢) sinh (;)

d) 2cosh (%) &) 3cosh 5x — 2sinh (%) f) tanhdx

5 Solve each of these equations, giving yvour answer to three significant figures.

@) 3sinhx +2coshxy =4 b) 4coshx — 8sinhx+ 1 =0
c) coshx +4sinhx =3 d) 3sechx —2=351anhx
e) 9cosh’x — 6sinhx = 17 f) 3sinh’x + coshx —2=0

6 Find the values of x for which 8 cosh x + 4sinh x = 7, giving vour answers as natural
logarithms. {EDEXCEL)

7 a) 1) Write down an expression for tanh x in terms of e® and e *.
ily Hence show that

2 =1z
| —tanhy = ——
1 +e2

b) Using the result in part a ii, evaluate
I {l = tanh x)dx iNEAB)
1]

8 The curve C has equation y = Scosh x + 3sinh x. Find the exact values of the coordinates of
the turning point on C and determine its nature. (EDEXCEL)

9 Show that, if x is real, 1 +1x% > x,
Deduce that coshx > x.

The point P on the curve y = cosh x is such that its perpendicular distance from the line v = x
is a minimum. Show that the coordinates of P are (In (1 +v2), v2).  (NEAB)
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EXERCISE 10A

10 Lei v = xsinhx.
. d:.r o ) d*y

i} Show that —= = xsinh x + 2cosh x, and find —.
dy? " dat
iy Write down a conjecture for ——.
e

n

iy Use induction to establish a formula for % (OCR)
X

11 Find the exact solution of the equation 2cosh x + sinh x = 2, (OCR)

12 The curve C is defined parametrically by
¥ = { + In{cosh r} v =sinh
i) Show that dy _ ¢ 'cosh’r.
dx

i) Hence show that % = ¢ “cosh*1{2sinh ¢ — cosh 1),
x?

liiy Deduce that C has a point of inflexion where ¢ =-‘5 In3. (OCR)

13 i) Show that

d (—I sinfidy + 4 sinh 2y + ﬁr) = I6hcosh’y
dv \2 ’ ’ ’ '

iy Given that x = 2sinh v, show that

-

sinh 2v = %.r\.f[.'r:: + 4)
and also that

A 4 i+ 4)

b | ==

sinhdy =

i) Use the results of parts i and ii to show that

- _:_ ] ¥ b . ]
Jg v+ Adx = E_rq_r + 10}+,/{x + 4) + 6sinh ! (; .1.-) + constant (OCR)

14 Consider the functions v, = 7 + sinh x and W ¥o= 5 coshi
¥; = 5cosh x whose graphs are shown in 0 L
the figure on the right. % =74 sinha
i) Show, by solving the equation, that the

solutions of 7 4 sinh x = 5cosh x are >_<
—log, 2 and log, 3.
liy Show that the area bounded by the two
graphs in the figure is Tlog. 6 — 10.
{NICCEA)
-1 0 I
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CHAPTER 10 HYPERBOLIC FUNCTIONS

15 Let [, = jmﬁh“xd.r, Show that

nl, = sinhxcosh” ™ 'x + (v — 1), _;

Hence show that

Inl
[ cosh’xdx = % G%g +In 2) (OCR)
u -

16 a) Show that di{tanh x) = sech®x.
X

b) The diagram on the right shows a sketch of part of the s

curve whose equation is 3

y=4tanhx-x x=20

i) Find, correct to two decimal places, the coordinates
of the stationary point on the curve.
i) Find, correct to four decimal places, the area of the

shaded region bounded by the curve, the x-axis
and the ordinate x = 2.
¢) For large values of x, the curve is asymptotic to the line ¥ = mx + ¢, where m and ¢ are
constants. State the values of m and ¢, and give a reason for your answer. (NEAB)

Logarithmic form

The inverse hyperbolic functions cosh™'x, sinh™'x and tanh™"x can all be
expressed as logarithmic functions.

Expressing cosh 'x as a logarithmic function
Let cosh™'x = y. We then have
x = coshy
| .
= x=—(e"+e"
2[ )
Multiplying throughout by 2¢’, we obtain
2xe’ =e¥ + |
= e¥-2xe+1=0

To solve this equation, we treat it as a quadratic in e*, which gives

o 2 EVET=3
2
= ef=x4ri—1

Taking the logarithms of both sides, we obtain
ry= In(x + m:l
That is, the principal value of cosh'x is In(x + v = ).
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LOGARITHMIC FORM

Expressing the principal value in a different form, we obtain

In(x + VAT — 1) = In[EF VX = Dl — v’x-_-—l;.]

x—vxr—|
—in L—_'T“_—'l}

| x—vx=1

1
=tn| 7]
= —In(x - Vx* = 1)
Hence, we have
In(x = vV — )= xIn(x + Va2 = 1)
which matches the symmetry of the graph of cosh x.

Example 5 Find the value, in logarithmic form, of cosh™'2.
SOLUTION
Using cosh 'x = In{x + vx? — 1), we have

cosh™'2 =In(2 + v3)

Example 6 Find the exact coordinates of the points where the line y = 3
cuts the graph of y = cosh x.

SOLUTION
When y = 3, we have
x = cosh™'3
= x=In(3+v8) =In(3+2v2)
By symmetry, the other value of x is ~In(3 + 2v2).
Therefore. the two points are
(In(3 +2v2).3) and (=In(3 +2v2), 3)

Expressing sinh ' x as a logarithmic function

Let y = sinh~'x. We then have

. |
x=sinhy = .t=?h:’—e"}

Multiplying throughout by 2e", we obtain
2xe’ =¥ — |
= e _2ye' —1=0

Treating this equation as a quadratic in e, we have

cy:h:t—-. ':Th+4 == cﬂ;xiﬁx-_!..]
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Taking the logarithms of both sides, we obtain
y=In(x+vx+1)

The value of sinh™" x can only be In(x + v + 1). We cannot have
sinh™' x = In{x — v/x* + 1), because x < V¥ + 1, which would give the
logarithm of a negative number, which is a complex number.

Hence, we have

sinh 'x = In(x + vx? +1)

Example 7 Find the value, in logarithmic form, of sinh™'3,

SOLUTION

Using sinh 'x = In(x + /7 + 1), we have

sinh '3 = In{3 + +10)

Expressing tanh ' x as a logarithmic function

Let y = tanh™'x. We then have

© = tanh y = S0bY
© coshy
Lie* —e")
L o3

X =4 .
(e’ +e¢7F)
Muluplying the numerator and the denominator by 2¢', we obtain
B et — |
e 4+ 1
= elx4x=e¥ |

X

Therefore, we have
b l+x | l +x
eV = = y=-=In
1 —x 2 | —x

T+ X

Hence, the value of tanh ™ 'x is % In ( :

). where =1 < x < 1.

Example 8 Find the value, in logarithmic form, of anh 'L
SOLUTION
Using tanh™' x r—-% In (: + 'f), we have

= - X

gy 1 f4
tanh %-E]n(;)

which gives tanh '} =1 In3,
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Example 9 Find the value, in logarithmic form, of sech '%

SOLUTION

Since v = sech™' L, we have

sechy =1

1 I

= = -~

coshy 2

= coshy=2
= y=cosh™'2

Using cosh 'x = In(x + v/x* = 1), we have

cosh™'2 = In(2 + v/3)
which gives sech™ 1=In2+ V3).

Summary

cosh™'x=In{x=+vx> = 1) x=1 Plussign gives the principal value

x° -

sinh~'x = In{x + +/ 1)

tanh '.rzéln(:-l_x) -l =x=|

- X

Differentiation of inverse hyperbolic functions

sinh™'x

We have y = sinh~'x, therefore sinh y = x.
Differentiating sinh v = x, we obtain

dy
shy —=1
cos 1{]1

dr 1] !

o

g
2

dx  coshy vq + sinh’y V1 +x
which gives

[ a4 sinh™'x = !
dx 1+ x
Therefore, we have
d.\' . §
———— =3sinh "x+¢
[ J v'r 1+ _'l': '

We now take v = sinh .,(._1') . EIVIng sin}rl;.' ==
a a
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. T X :
Differentiating sinh y = —, we obtain
a

dy 1
coshy —=—
! dy a
:} g."—‘ — | - = ;
dx acoshy /) + sinh?y
which gives
dy 1 1

dx J T1=1.-’ru"+.r3'
a I—i-—('—)
i

That is, we have

L sinh™" (E) = —L
dx d var + x2

from which 1t follows that

[ Jﬁ = sinh™' (E) +c

cosh 'x

We have y = cosh™'x, therefore cosh y = x.
Differentiating cosh y = x, we obtain

sinh_rﬁ.—_l
dx
L dv_ 1 1 1
dx  sinhy v/mh.y_i Vi -1
which gives
d 4 1
[ d.TCOSh v %=1

[

Therefore, we have

dx -1
=cosh™ ' x +
j Va1 e

We now take y = cosh™ (E) . giving cosh y = =
a a

Differentiating cosh y = X we obtain
a

. dy 1
hy =2
sin _}dx u
dy _ | 1
~ x

asinh y ﬂ‘/cmhz},_ 1
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which gives
dy _ | 1

dx [\ Ve =&
ﬂ‘j(;)—]

That 15, we have

L3 umh'](i) S
dv a vl =

from which it follows that

e

- - a

tanh 'x

We have v = tanh™' (l) therefore tanh y = a3
a a

. - X .
Differentiating tanh y = =, we obtain
4]

»ody 1
sech™y—— = —
dx a
dy _ 1 _ 1
dx asech’y a(l — tanh’y)
which gives
dy _ 1 _a

dx [ R
all — (—)
a

That is, we have

ir.imh '(i) = — < .
dx i1 as - x°

from which 1t follows that

J ‘dx ~ = 1 tanh '(i) 4
a—x d a

Note We can integrate

by partial fractions:

2 _ 2
[ ,d't ,=-LJ( L + ! )d.tziln(a+'r)+r
=3 2alla+x a-x 2z g - X

This result is the logarithmic form of tanh ](-). Hence, it is unusual to use a

a
function in tanh ' x in differentiation or integration.
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»  Example 10 Differentiate

[ ]

s a) i) sinh"(f) ii) sinh'4x b) cnsh"('—‘.)

H 3 5

" SOLUTION

: s d . -1 X 1

s a) Using — sinh™'{ — | = —=———, we have

» dx a a* + x-

s d . . fx |

n i — 5 !'II‘I- - | =

. :‘ dx B (3) VO + xf

‘ -

- 1] E-sin]tl"'fl-.w:i inh ' = =;_
. dx dx 1 V}‘J e
" - - 16 :
E which gives

: i sinh’ .4.1' = %

u dx v+ 162

- d X 1

[ ]

= b) Using — mh"('—)z———.* ¢ hav

. ) Using i C . Ta we have

E .-d_ cush_1 (i) e ;

. dx 5 Vxi - 25

Example 11 Find

I}r;d.\‘ b) r-—-l——dx
o V4 +xt o Va4 + 3x-

SOLUTION

a) Using the first integral formula on page 202, we obtain

: | =T ) :
L;ﬁ‘“— [*‘ (E)L

=sinh™'l — sinh™'0 = sinh™"1 = In{1 + )
Therefore, we have
de=1In{l ++2)
L Va4

b) Before integrating, we must reduce the coefficient of x* to unity (as
with inverse trigonometric functions), which gives

J —_—dr = | ——=dx
o v+ 3x° vilh f4
- g
3
B B O S
B \-ﬁ- _-_-2
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el ()],

%
=v+,j sinh” ( ) sinh™ IZI]
%
1y
NE

o(F3+)
(%5

7)

Therefore, we have

=

b ]
—_—dr =
L I ' V3

) 1
Example 12 Find r dx
ol 1vxi =19

SOLUTION

Using the first integral formula on page 203, we obtain

I _:(‘r)]&
dx = |cosh™ | =
i '\.".Tz -9 [ 3 1
=cosh™'2 —cosh™' 1 =In(2 + v3) -0

Therefore, we have

| o
T dx = In(2 + V3)
Example 13 FindJ | e
dxf —Bxr— 16

SOLUTION
Before integrating, we must

e Complete the square (as with inverse trigonometric functions).
e Reduce the coefficient of x* to unity.

Hence, we have

VAT —Bx — 16 = VaVxI —2x — 4

=2\/(x-1P -5

which gives

| 1 dx
Jﬁa.ﬁ—sx—mdhzl fx— 1P -5
o (2= 40
_ECMh (v@)+t
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We can express this result as

[ x=1, [J(x=1y
Eln(ﬁ =+ 3 —]) +C

which gives

In(\ﬂx— IV —5+x- l) —%Inv‘?+r

In(v.rz —-2x—44x- I) +¢

J 1 dx =
Vaxl —8x—-16

b | == | —

Exercise 10B

1 Differentiate each of the following with respeci to x.

a) sinh~'5x b) cosh™'3x ) sinh~'v2x d) msh"’-}x

e) sinh 'x? f) sech 'x g) coth™'x

2 Find each of the following integrals.

o dx b [ dx c dx
I x1—4 }. x2-9 ; Vdxt - 25
g [ dx o) [ dx 1 J' dx
9x2 ~ 16 J V94 x° V16 + x*
o |- e n [—4%
J V25 + 16x° J V94 25x¢
3 Evaluate each of the following definite integrals, giving the exact value of your answer.
a) Jl dx b) J‘ dx o r dx
RUET: o Va4 x? sV 16
g J‘ dx o) J" dx
o V4 + 37 4 V25x2 =1

4 Evaluate each of the following integrals, giving your answer in terms of logarithms.

a) -I'z dx b) J‘1 dx o Jd dx
1 V25x° -4 1 V4 4+ 9x 3 =10 =3
dx

: dx J dx J"
mjﬂq,r'q{x+[)2+5 * o V4 + Bx + x° ) o v16x7 + 20x + 35
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1
Vel +dx =12y

& Given that fix) =

a) find jﬂ.\:]d.\'.

106
b} Hence find the exact value nI’J fix)dx, giving vour answer as a single logarithm.
¢ (EDEXCEL)

6 a) Show that sinh 'x = In(x + VX7 4 1),

b) Evaluate r

=1

IWIEC)

T a) Find JJ.' sech’xdx.

b) Find the general solution of the dilferential equation
cosh x dy _ vsinhy = x
dx
giving your answer in the form y = fx). (EDEXCEL)

8 ' v +S5=(pr+gqF +r
a) Find the values of the constants p, ¢ and r.

. 1
b) Hence, or otherwise, find | -———— dx.
) Hence, or otherwise Jq_l-: +d4x 4+ 5

€) Show that

dy = In[(2x + 1)+ (4 +dx + 5]+ k

l V(4 + 4y + 5)
where & is an arbitrary constant. {(EDEXCEL)

9 a) Show that sinh~'x = In{x + V1 + &%)

|

dx . . .
B} Evaluate I —————_ giving vour answer correct to four decimal places. (WIEC)
) b Vs 4 6x + 10 € E

10 &) Express 437 + 4x + 26 in the form (px + ¢)° -+ r. where p, g and r are constants.
. I
b) Hence determin I - dx. (EDEXCEL)
) Hen ‘ © Vi4x? 4+ 4x 4 26)

11 i) Find 4, B and C such that
I+ U+ 2= Alx+ B +C
i) Show that

l _ = -1 cosh '( jwﬂ}) ¢ (NICCEA)
VIxT 4+ 24x+ 23 W3 5

12 Express x* — 6x + 8 in the form (x — p)’ — ¢, for positive integers p and g,

: dy
Henee evaluate j

——————— giving vour answer in terms of natural logarithms.
4 4/(xF — 6y + 8)

(AEB 97)
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13 a) Simplify (¢* +e*)* — (¢" — ¢~*)* and hence deduce that cosh’x — sinh’x = 1.
b) Given that y = arsinh x, show that dr _ 1

dx i+

g) Find larsinh xdx. {(EDEXCEL)

14 A curve has equation y = xsinh™'x.

) Show that
dy 2+
de? (1423

i) Deduce that the curve has no point of inflexion. (OCR)

15 Starting from the definition of cosh in terms of exponentials, show that
cosh™ x = In[x + /(x* = 1))

Show that
2 1 1 4+Jls)
—_—dy == In| —— OCR
,[.ﬂdﬂ—l] g 2"(1+v@ Sl

16 Given that y = tanh ', derive the result g—‘} -l

x 1-x
[No credit will be given for merely quoting the result from the List of Formulae.)
) 7
Show that rlanh"lrdx = % |n‘l'—;. (OCR)

17 1) Let x = sinhw. By first expressing x in terms of exponentials, show that
sinh™'x = In[x + (x* + 1)]
il) By using an appropriate substitution, show that

I- . _p(.r)
————dx=sinh™' [ =
.lq,r"[.'cl+n1] X = sin p +c
where a and ¢ are constants (a > 0).

iii) Evaluate

I
l: T

giving your answer in terms of a natural logarithm, {OCR)

18 a) State the values of x for which cosh ™' x is defined.
b) A curve C is defined for these values of x by the equation y = x — cosh™'x.

i) Show that C has just one stationary point.
i) Evaluate y at the stationary point, giving your answer in the form p — In ¢, where p and
¢ are numbers to be determined. (NEAB)
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19 a) Using the substitution v = ¢*, find Iiﬁ:h xdx,

b) Sketch the curve with equation y = sech x.
The finite region R is bounded by the curve with equation v = sech v, the lines x = 2, x = -2

and the xy-axis,

¢) Using your result from part a, find the area of R, giving vour answer 1o three decimal
places. (EDEXCEL)

20 The diagram shows the curve with equation y = ——,
(x2 + 4)t

-

The finite region bounded by the curve, the x-axis, the y-axis and the line x = 4 is rotated
through one full turn about the x-axis to form a solid of revolution.

Use integration to determine the volume of this solid, giving your answer in terms of = and a
natural loganthm. {AEB 98)

21 a) Use the definition of cothx in terms of exponential functions to prove that

arcoth x = % In (I + 1)

x—1

The function { is defined by f{x) = arcoth G) © 0

b) Show that fis odd. ’
¢) Find f{x).

. . . 1 .1
d) Expand fix) in a senes of ascending powers of — as far as the term in — and state the
X X

coeflicient of

-
xtn+ |

. . . 1. . .
&) Hence, or otherwise, derive the expansion of 3 = in a series ol ascending powers nr-lr as
- x* X

. . i
far as the term in l* and state the coefficient of —. (EDEXCEL)
X x
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22 Starting from the definitions of sinh x and cosh x in terms of exponentials, show that for
x| < 1,

autam]m:r:l h‘:(l+x)
2 | -x

a) Expand artanh x as a series in ascending powers of x, as far as the term in x° and state the
coefficient of x***! in this expansion.
b) Solve the equation

3sech’x +4tanhx+1=0

giving any answers in terms of natural logarithms.
¢) Sketch the graph of y = artanh x and evaluate the area of the finite region bounded by the
curve with equation y = artanh x and the lines x = % and v = 0. {EDEXCEL)

23 a) Use integration by parts to show
J‘x"' cosh xdx = ¥’sinh x — 2xcosh x + 2sinh x + ¢

b) Consider the two curves whose equations are Yh ¥, = sinh x
w=sinhx yy=2-coshx
and which are shown in the figure on the right. /5— ,,,,,,,

) Show that they cross at the point (log. 2, %j.
i) Find the area bounded by the y-axis, the

curve v, and the curve y,.

il) The area bounded by the y-axis, the line © ' )
¥ =4 and the curve y; is rotated about the
y-axis to form a solid of revolution. Show ¥, =2 - coshr

that its exact volume is

%[3{[03,2]3 — 10log. 2 + 6]

[T'hc volume of revolution about the y-axis is given by :rl.tz d_r.] (NICCEA)

‘Double-angle’ formulae

To integrate cosh’x and sinh’x, we must express each in a form which contains
cosh 2x, in a similar manner to integrating cos*x and sin“x (see Iniroducing
Pure Mathematics, pages 451-2).

To obtain the identity relating cosh 2x to cosh®x, we have
cosh 2x = %l{e“‘ +e M) = %[(c‘ 4+ = 2]

- éu cosh’x — 2]

which gives
cosh 2x = 2cosh’x — |
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To obtain the identity relating cosh 2x to sinh’x, we take
cosh 2x = 2cosh™x — 1
and make the substitution cosh’x = 1 4+ sinh’x to obtain
cosh 2y = 2{1 + sinh"x) — 1
which gives
[ cosh 2x = 2sinh’x + |

Similarly, we have

: . 1 ix = 2x _] N
sinh 2x —;{E — e }—;[c'

— 'I.HEJ. A @ jl
which gives

[ sinh 2x = 2sinh xcosh x
Hence, we see that J-:ﬂsh:m' dx is given by

Jmsh"n.t dx = l%{umh Jax + 1ydx

which gives

o -

3 1 . ¥
[ Jt:t!ﬁh‘n.r dx = — sinh 2axy + 5 4

Example 14 Using the substitution x = 3sinhw, find the value of
I VO 4 xidy,

SOLUTION
Differentiating the substitution x = 3sinh u, we obtain

d—x = 3coshu
i
= dx = 3coshudu

Substituting for x and for dx in Jy"'} + x'dx, we have
I VY +ldr = l V9 + 9sinh*u (3 cosh u) du
= j 9 cosh’u du

j{msh 2u+ 1ydu

BN SN E NI EE NI RN E NN S NN TN AN ENE NN EER
[ Y=

| 2

(—ﬂlj— sinh 2u+u) 4
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Using sinh 2u = 2 sinh wcosh u, we obtain
J\.ﬂ'? +xldx = g sinh ucosh u +%u +c

As the question involves an integral in terms of x, the answer must be
given in terms of x.

Using coshu = v/sinh®u + | and sinhu = -;L— we obtain

Jf9+ dr—%§1ﬂ'l+£+%mnh (;) +c

1 ;.9 x  [x*

==Xxy9+x+=In| = —4+1]+

z'l'\.-" X > (3"'”'9+) c
Therefore, we have

Jﬂ9+ﬂdx:§fr + 9= In( 9+.r)+r

Power series

On page 177, we used Maclaurin’s series to find the power series for sin x and
COS X.

In a similar way, we can find the power series for sinh x and cosh x.

Power series for sinh x

Let sinh x = @y + ay.x + a2 4+ a3x* + ..., where the a's are constants.
When x = 0, sinh0 = a;. But sinh 0 = 0, therefore a; = 0.
Differentiating sinh x = ag + @, x + a2x° + axx” + ..., we obtain
cosh x = a; + 2a;x + 3a:x® + dagx’ + ..
When x =0, cosh0 = a;. But cosh0 = 1, therefore a; = 1.
Differentiating again, we obtain
sinhx =2a; + 3 x 2a3x + 4 x 3a7 + 5 x dasx’ + ...
When x =0, sinh0 = 2a: = as=10.
DifTerentiating yet again, we obtain
coshy=3x2m+4x3x2ax+5xdx3asx+...
When x=0,cosh0=3x2ay = @ =—3£'-
Repeating the differentiation, we obtain

1
iy =0 ﬂjﬂ'i—!' ﬂﬁ:ﬂ ﬂ'?z'.:lr!
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Hence, we have

L b 1« 1,
[ sinh ¥ = .r-—-i.w. -+-§.r *'_;'!-'1 + ...

By d’Alembert’s ratio test, this series converges for all real x.

Power series for cosh x

We can use the procedure for sinh x to find the power series for cosh x.
However, it 1s much easier to start from the expansion for sinh x. Hence, we
have
d . d 1 1 l -
coshx = —siphy = — [x+ = + =" +=—x" +..,
dx dx 3 5! L

which gives

1 . 1 1
coshx=1+—x"4+—x'+—x"+...
2! 4! 6!

By d'Alembert’s ratio rest, this series is convergent for all real x.

Osborn’s rule
Taking the power series for cosiy, we have
e ! # : I . ." _
cosiv =] - E{u] - E{J.\.}

I o 1
_]+5_r —!—E.t + ...

which is the power series for cosh x. Hence, we have
[ cosiv = coshy
For sinix, we have

T 1 . .1 1. s
sinix = (ix) — ;!—[I.'i.'} e 3 (i) —...

&2

¥ x
— i(_r——'—---'—---...)
3l Al

which is the power series for i sinh v, Hence, we have
[ sinix = isinhx
Since cos*f! + sin“tf = | for any angle #, we know that
cos’iv + sinix = |
which gives

cosh’x + (isinhx) =1
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b) Sketch the curve defined by x = cos 0, y = sinfl.
If the co-ordinates of P’ are (cos ¢, sin ¢), shade a region whose area is 4 ¢. Comment on
the similarities between the figure on page 215 and vour sketch.  (NICCEA)
14 Differentiate /(x* — 1).
Show that

rcnsh"xd_r =aln2+b
[
where @ and b are rational numbers to be determined. (NEAR)

15 The diagram on the right shows a region R in the x—y plane ¥ A
bounded by the curve y = sinh x, the x-axis and the line AB
which is perpendicular to the x-axis.

a) Given that AB = , show that OB = In3.
bB) 1) Show that

cosh(lnk) = M

i) Show that the area of the region R is 4.
¢) 1) Show that '

3
r sinh?x dx = —JI[sinh(In 9) — In9]
]

i) Hence find, correct to three significant figures, the volume swept out when the region R
is rotated through an angle of 2 radians about the x-axis. (NEAB)

16 a) Given that u = {(e" — e™*), prove that y = In(u + /(i? + 1)).
b) Using the substitution x = sinh i, show that

¥ 1 e e
de&— 2[1'9"'“ +'l'2:| In(x+ (1 +x )] +k

where k is an arbitrary constant. {EDEXCEL)
17 The diagram shows a sketch of the curve defined "k

by the parametric equations
x=smhit y=coshr =0

together with the tangent to the curve at the point P
(sinh p, cosh p). The curve meets the y-axis at the
point Q and the tangent at P meets the p-axis at

the point R.

a) Show that the equation of the tangent to the
curve at P is

-

veoshp — xsinhp = | d
b) Given that R is the point (0, 1), show that
p=In2+ \-""j:l



EXERCISE 10C

¢} Show that the area 4 (shown shaded in the diagram) bounded by QR. RP and the arec P(} is

given by

r -
A= j coshrdr - %
0

d) Hence find the value of A4 in the form
ain(2 + v3) + b3

where a and I are rational numbers to be determined. iNEAR)

18 a) Use the power series for sinx to show that, for small values of x,

b) Hence, or otherwise, find the constants a, b, ¢ in the approximation
sin'x = ax? + by’ + ex’

¢) Find a similar approximation for x*sinh x for small values of x.
d) Show that

e - . gt ¥ 3
e sinhx — sin"x 2‘;" (NEAB)

X =il _l.."

p— e w it fm o ——— e —
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11 Conics

That an extensive theory of the conics was oblained is eloguent testimony 1o the brilliance
of Archimedes and Apollomius.
JEREMY 1. GRAY

Generating conics

If we take a solid, right circular cone and, in any direction, cut a plane section
through it, we obtain a curve which is a member of the class of curves known

as conics or conic sections.

It follows that the shape of the curve so obtained is determined by the
direction in which we make the cut: that is, on the inclination, 0, of the plane
section to the axis, as the figure below shows.

Parabala Ellipse Hyperbaola

Hence, with the cone standing on a honizontal plane, if we cut in a direction
parallel to the slant height of the cone, whereby @ = a, we obtain a parabola.

. N : n . .
If we cut in a direction for which x < ! < ;‘ we obtain an ellipse.

-

If we cut in a direction, not through the vertex, for which ¢ < z, we obtain a
hyperbola.

If we cut horizontally through the cone (that is, = %) we obtain a circle.
The study of the parabola, the ellipse and the hyperbola as sections of the
same cone originated with the Greek geometer Apollonius, who flourished
about 280 BC. They were not defined analytically as loci until the seventeenth
century, largely due to the work of the renowned French mathematician
René Descartes (1596-1650), and of the English mathematician John Wallis
(1616-1703).
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PARABOLA

Conics as loci

Analytically we define a conic as the locus of a4 point which moves so that the
ratio of its distance from a fixed point to its distance from a fixed hine is
constant.

The fixed point is called the focus, and the fixed line the directrix. The constant
ratio is known as the eccentricity of the conic and is denoted by e.

Hence, in the figure on the right, where the point P is

describing a conic, we have Disectrix

PF = ¢PT
When e = |, the conic is a parabola. /
When (0 < e < 1, the conic is an ellipse. T s

When e > 1, the conic is a hyperbola.

The circle (which we met in furroducing Pure Mathematics,
pages 220-7) may be treated as the limiting case of an ellipse,
in which e = 0 (see pages 222-6).

Foiun

Parabola

Px, v}

Let the focus, F, be (g, 0) and the directrix be x = —a. Then T
for the point P{x, v), we have

PT=x+a PF=\/(x—a)i+)*

But PT = PF, since for a parabola ¢ = |. Hence, we obtain

(x —a) + ' =(x+a)

which gives X -
Q -
[ J-':. = darv o a [
This is the standard equation for a parabola, an example of = —g
which 1s shown at bottom right. Dreetriz

Common parametric equations for the parabola 3* = 4ax are

[ x=ar and y=2ar
where 1 is the parameter. "
The chord of a parabola through its focus, and perpendicular L//—_—_:m
to its axis, 15 called the latus rectum. Thus, in the diagram on
the right, CD is the latus rectum. i
Half the length of this chord (FC or FD) is known as the
semi latus rectum. of & IF i
From the equation y° = dax, we see that the coordinates of T
C are (¢, 2a) and those of D are (a, —24). Hence, the length
of the latus rectum is 4a and that of the semi latus rectum O
15 2a. (See also pages 223 and 231)) \\__
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2 .2
The parametric equations for the ellipse 4 J]F = | are
a

I

x=acost! and y=bhsind

where # is the eccentric angle of the ellipse. (Further discussion of this
parameter and its use in projective geometry is beyond the scope of this book.)

Example 4

}'I:
F=—=1,
4

|4,

a) Find the eccentricity of the ellipse

Il

b) State the coordinates of its foci.
c) State the equations of its directrices.

SOLUTION
a) The general equation of an ellipse is

L
—_—
9 4

T

* +2 = 1. Hence, for the ellipse

b

(]

CA

=l,wehavea=35b6=2

¥

For an ellipse, ¢’ = | — -E- which in this case gives

4 5
f=1-=-==
9 9
Therefore, the eccentricity is TS
b} The foci are { £ ae, 0), which 1n this case gives (v/3, 0) and (=+/5,0).
e} The directrices are x = + E, which in this case give

3 &
=T ofs =———
TRV
3
Therefore, its directrices are
= = and x= 2
V5 ' V5
Example 5 Find the tangent and the normal to the ellipse E + £ = ]
&

at the point (acosf, bsin ).

SOLUTION
We have

x=agcosll = %: —asinf

y=hsinf = %= bheosfl
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We cannot integrate a function in ¢ with respect to x. Therefore, we must
convert the integration with respect to x to an integration with respect to
fl. Hence, we have
. B dx
Areaofellipse = J" ydx = I bsinf — do
—~d a de
Using x = acos 0, this gives

Area = r b sin (—asin @) d@
(1]

Because the ellipse is symmetrical about its axes, we can express the
integral as

Area = 4Fnh sin’fl d@
0
Using cos 26 = | — 2sin°f, we obtain

Area = -mf%u — cos20)df
[i]

wa |

= dab l{i‘— 1 sin 20
2 4 4
Therefore, the area of an ellipse is mab.

Exercise 11B

1 Find the eccentricity, foci and directrices of each of the following ellipses.

O 2P 2y
LN A b) =+ =1 IR S
Bt TRET: TN
Xy (=1 0+2°

e 5 T !

2 Find, in cartesian form, the equation of each ellipse with the focus and the directrix as given.
a) (3,0), x=12 b) (2,0), x=18 c) (0,4), y=8 d) (0,3), v=15

3 Find the equation of a) the tangent and b) the normal to the ellipse % + é = | at the point
(5cosf, 4sin6). )

4 Sketch the curve given in polar coordinates by the equation

,o_ 2
3+ 2cosf

Prove that this curve is an ellipse and identify its foci.




[

Hyperbola

Let the focus be (ae, () and the directrix be x = g
e
Since, for a hyperbola, ¢ is greater than 1, the directrix
is situated between the origin and the focus.

For the point P{x, v}, we have

PF = ’{1-—&{’!‘“* PT=x-4
¢

Since P ¢ = PF =¢PT. we have
PT
.fr__h_- . o
X —aek + ¥y = t“(.T - —)
"_F
=X —a
Squaring both sides, we obtain
(x - ae) + ,1': = {ex — rr}!
= ¥ =laex+ae + ) =8 = 2aex +a
= Xl - )+ =d(1-¢)
which gives
3 i
S Tl
a (]l - e)
But ¢ = 1, therefore a*(1 — &) is negative.

Hence, the standard equation for a hyperbola 15

P ~

a B
where

!l}:':i{:{i':—]}l or £3=1+_~
[ o

As x and y become large, we have

- - = y—=+—
* b- a

Therefore, the asympiotes of a hyperbola are y = £ b X
a

b i

HYPERBOLA

Lk
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We can express this equation in several different forms.

For example, when x = o is used as the equation of the directrix, we have

I.'Ilf‘
o .
| +costl
When the focus is at (ae, 0) and the directrix is x = =, we have as the equation
of the general conic t
e

" a1 + ecos )
which gmves

r=-2€)  poran ellipse
| “ecosl
ale = 1)
= ———— for a hyperbola
| -ecost ype

We can also derive a similar polar equation in terms of /, the length of the semi
latus rectum (see also pages 219 and 223).

With reference to the diagram on the right, we have ‘*\_\\
PT =¢PT = r=¢(AB—rcosd) A R
The point A is on the conic, so we have n.
FA = eAB . ’

FA is the semi latus rectum, so we obtain

/=e¢AB = AB=-

¢ ///

which gives

r=¢ (i — reos ﬂ')
3

= fl+ecosi)=1

That is, we have

i
Fe—
| -+ ecosdd

MNote The distance between the directrix and the focus s i
e

Exercise 11C

1 Find the eccentricity, foci and directrices of each of the following hyperbolas.

a) = S A o —-1 =
6 9 49 16 25 16
oy (x=1" (+2)
oY _ gy o - —1

9 4 9 } 25 9
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2 Find, in cartesian form, the equation of each hyperbola with the focus and the directrix as
given.

8) (12,0, x=3  b)(180), x=2 ¢ (0,8, y=4 d) (0.15), y=3

b} p ]

3 Find the equation of a) the tangent and b) the normal to the hyperbola -_::5 - ﬁ = | at the
point (5 sec 0,4 tan ). }

Exercise 11D

1 Consider the parabola y* = dax.

i) Show that the following parametric equations define a point on this parabola
x=af y=2a

i) Show that the tangent drawn to the parabola at the point (ar*, 2ai) has an equation given by
ty=x+ar

Consider the points P(ap®, 2ap) and Q{ag’, 2ag), where p # 4. Let M be the mid-point of PQ,

and H be the intersection point of the tangents at P and Q.

i) Show that the line MH is parallel to the x-axis. iNICCEA)

2 The equation of the curve C is 3* = 8x. The point P(2r%, 41) lies on C. The line through the
point (2, 0) perpendicular to the tangent to C at P intersects this tangent at the point Q.

a) Find the coordinates of Q.
b) Given that R is the mid-point of PQ, find the equation of the locus of R in cartesian
form. (WIEC)

3 The point P lies on the parabola with equation 3* = dax, where a is a positive constant.
a) Show that an equation of the tangent to the parabola at Plap’, 2ap) is py = x + ap”.

The tangents at the points P(ap®, 2ap) and Qlag®, 2ag) (p # g, p # 0, g # 0) meet at the
point M.

b) Find the coordinates of M.
Given further than N lies on the directrix of the parabola,
c) write down a relationship between p and 4. ({EDEXCEL)

F F

4 The line with equation y = mx + ¢ is a tangent to the ellipse with equation E + L =1,

at b
a) Show that & = &n® + I°.
b) Hence, or otherwise, find the equations of the tangents from the point (3, 4) to the ellipse

) N X
with equation 73 +=—=1. (EDEXCEL)

25

5 An cllipse has equation % - % = |, where a and b are positive constants and a > b.
a) Find an equation of the tangent at the point P(acos 1, bsin ).
b) Find an equation of the normal at the point P(acosr. hsin1).
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The normal at P meets the x-axis at the point Q. The tangent at P meets the y-axis at the
point K.

¢) Find, in terms of 4. b and r. the coordinates of M., the mid-point of QR.

. K
Cnven that 0 < 1 < 3

%

. : dax ' (b Y .
d) show that, as r varies, the locus of M has equation | — X + 3, = 1. (EDEXCEL)
a — b ¥

¥

e

The point P(2cos @, 3sin #) lies on the ellipse % LA}
a) Find the equation of the tangent to the ellipse at the point P(2cos#, 3sindl), where 0 # (.
b) Given that the tangent in part a passes through the point (2, —6), show that

cosl = 2sinl = |

¢} Solve the equation in part b for 0° < # < 360" and deduce the coordinates of P. (WIEC)
A curve C has equations

120

x=¢ y==
i
where ¢ is a constanl and 7 is a parameter,
a) Show that an equation of the normal to C at the point where r = p is given by
pr4ept=px+e
b) Verify that this normal meets C again at the point at which 1 = g, where
gr' + 1 =0 (EDEXCEL)

The rectangular hyperbola C has equation xy = ¢, where ¢ is a positive constant,
a) Show that the tangent to C at the point F‘(:'_p_ L) has equation
rn
Py=—x+2p

The point Q has coordinates Q(f'q. E), g # p. The tangents to C at P and Q) mect at N.
i

Given that p+ g # (0,

2c

b) show that the y-coordinate of N is .
prq
The line joining N to the origin O 1s perpendicular to the chord PQ).

) Find the numerical value of p’¢°.  (EDEXCEL)

The ellipse C has parametric equations
x=243cost y=2snf

a) Obtain the cartesian equation of C and find the eccentricity of the ellipse.
b} Write down the coordinates of the foci.
¢} Sketch C, stating the coordinates of its intersections with the axes.

The arc of the curve C between 8 = 0 and 6 = 4 x is rotated through 2z about the x-axis.
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10

1

12

d) Show that the area S of the resulting surface of revolution is given by

S=4n F sin (9 — Scos?0)? do
i)

Using the substitution (v/5) cos # = 3sin u, or otherwise, find the value of S, to two decimal
places. (EDEXCEL)

The curve C, is that arc of the hyperbola with equation
Y _ Y= a>0
9 a*

which contains the point P(3acosh @, asinh 8).

a) Show that the equation of the normal to C; at the point P can be written in the form
yeosh 0 + 3xsinh f# = 10asinh # cosh @

This normal meets the coordinate axes at A and B.

b) Show that, as # varies, the locus C; of the mid-point of AB, is an arc of a hyperbola.

For each of the arcs C, and 5

¢) give the coordinates of any points of intersection with the coordinate axes and the equations
of any asymptotes

d) find the eccentricity of the hyperbola and state the coordinates of the focus and the equation
of the corresponding directrix. (EDEXCEL)

The poinis S(s‘. l) and T(f. %) lie on the curve xy = 1 and the line ST passes through the
5

point (1, 2).

a) Show that 54 1 = 1 + 2si.

b) The tangents to the curve at S and T mect at the point P. Show that the locus of P 1s given
by y=2— 2x. (WJEC)

The figure on the right shows a parabola and a circle.
The circle passes through the parabola’s focus S,

a point P on the parabola and the intersection point Q
of the directrix and the tangent at P.

i) If the parabola has focus S(1, 0) and directrix
x = —1, show that its equation is y* = 4x.

Let the point P be given by (£, 21), where ¢ # 0. /‘ )

L | )

W) Show that Q is the point (—1. r:]).

lif) Verify that the focus S, the point P and O F—
the point @ lie on the circle with equation

e

e =P =Dx+0 =3 =1+ =2r=0

iv) The circle intersects the directrix again at the point R.
Find the coordinates of R.
v) Show that PR is parallel to the x-axis. (NICCEA)
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12 Further integration

Many a smale makerh a grarte.
GEOFFREY CHALUCER

In Introducing Pure Mathematics (pages 433-8 and 445-7), we met integrals
such as J.t‘{.r: + 1) dx, where we used the substitution x* + 1 = u, and

j.re:‘d.r. where we integrated by parts.

We can extend these methods by using a greater variety of substitutions,
including hyperbolic functions, to enable us to find integrals such as

J W9+ xtdx,

To integrate more complicated expressions, we normally use the inverse
function of a function rule given on page 294 of Introducing Pure Mathematics.

Inverse function of a function rule

ve wEpe o ey .
[ J-f[.t}[l'[.x}]"d.x S M) +¢

It is usually yuicker to differentiate by inspection the new expression than to
obtain '{x) in the integrand, as shown in Examples | and 2.

Example 1 Find the constant & in

j.wn[.r‘ + D) de =k + 1) + ¢

SOLUTION

Differentiating (x* + 1)*, we obtain
iil‘z + 1) =8 x 2x(x® + 1) = 16x(x* + 1y
dx

Therefore, we have
Iﬁ]x[.t': +Vdx=(*+1)+¢'

=> J.t't.t‘: +1)dx = %{r’ +1)f 4

which gives k = ;.

Al EFEEEEESEEEESEEENEEEEEEEEEEEEN
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Example 2 Find the constant k in
j sin 2xcos’ 2xdx = kcos*2x + ¢
SOLUTION
Differentiating cos*2x, we obtain
8 x —2sin 2xcos’2x = —16sin 2xcos’ 2x
which gives k = — 4.

Therefore, we have

Jsin 2xcos 2xdx = - T]f; cos’2x + ¢

Note In those cases where you experience difficulty in spotting the integral,
use instead integration by substitution.

Integration by parts

Example 3 Evaluate J:"‘cos dxdx.

EOLUTION

When faced with a product neither term of which will disappear after
repeated differentiation, we usually use integration by parts untl we
obtain the integral with which we started as one of the terms on the night-
hand side.

Hence, we have

e x —4sindxdx

(

¢’ ';mih'— :I}' 3’14(.['!-*-41[]1)

l:" cosdxdx = %c’“ cosdx —

Lol | i oy

1 3,
-——Ec’ cosdx +

= %c:h cosdx +—

=l:3“"-::354t+g smh—%JE cosdxdx

We now move the (original) integral on the RHS to the LHS:

lc!‘ cosdrdy + ;—ﬁ e cosdxdx = %th cosdx -i-%:'l' sindy + ¢

25T & | 4 4, .
= ry ¢ ms4.rdx=3n'1' cosdx +§¢3' sindx + ¢

=, . e ensdrdy = % (% e cosdx + %tj" sin 4.-:) +c'

Hence, we have

[ e cosdxdy = i e cosdx + i e sindx + ¢’
25 25

= 4
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INTEGRATION OF FRACTIONS

Integration of fractions

X245
dx.
x2+9 §

Example 4 Find J
SOLUTION

When the power on the numerator is higher than, or equal to, the power
on the denominator, we first divide the numerator by the denominator.

Hence, we have

J":_'_Sd:l::‘[(]-— e )d:-:
X +9 x+9
= _r—%tun_'('—;) +c

X+3x+7
X+2x+4

Example 5 Find J dx.

SOLUTION

Dividing, we obtain

2+3x4+7_ 0 x+3
w42+ 4 '+ 2x+4
To integrate -,r;}~ we use
M4+2xy 44
I'(x)
——dx=Inflx)+¢
[ fix)

(derived on page 422 of Introducing Pure Mathematics).

S0, we need to obtain in the numerator a multiple of the differential of
x* 4 2x + 4. Hence, we convert

x+3 o 1@x4+2+2
x+2x+4 42y + 4
which gives

2+3Ix+7 I x+3
EAF o= {142 dx
Jx3+1~:+4 ) ( .r1+?_r+4) '

i 2x 42
= (I+ -!;l:...t ) + 2 )d_‘r

Me2x4+4 P4 2x+4

I L(2x 42
= mx+J-;{"—]dx+zl—-‘5:’i———
M4 2v+ 4 (x+1)y+3

Therefore, we have

X +3x+7 L, 5 _ 2 afx+1
dex—.t+5|n[.\ +2.T-.—4}+ﬁlﬂﬂ ( ﬁ )+r
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Mrs Parent is the driver for 80% of the time
and her daughter is the driver for the remaining
20% of the time.

Mr Parent checks the car at home, not
knowing who drove it last.

Find the probability that there is less than

15 litres of petrol in the tank.

When Luke throws a dart at a circular target of

radius acm the dart is certain to hit the target

and all points in the circle are egually likely.

(i) Find the probability that a dart lands
within xcm of the centre of the target.

(ii) The probability density function for the
distribution of the distance of a dart from
the centre is of the form

9  Contimious random variahles 239

si=dt fmred
Show that the function of x that should
replace the asteriak is %+

(iii) Find the mean of the distribution. [SMP]

10 X is a random variable having probability

density function f, where
q:;:%. 0<x<h,
fix) =0, otherwise.

Given that ¥ = X(h - X), find E(Y).
Find also the probability that ¥ is greater than

® [ULSEB(P)]
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2 Find each of these integrals.
a) J e'cos vdx b) J e'sin 2y dx €) J e cos xdx d) J ¢ cos Sxdx

e) I:‘* cosh 2xdx n Jc—’* sinh 3x dx

3 Integrate each of the following with respect to x.

x° X~ 4 2x -5 3+ Tx
b
T e g paT: D ext3 N x
e 2x-1 0 x+1 ) x-=1 h) 2x—1
XN4+2x+3 x4+l g Vxi+x—1 Vaxt —4x+ 5
0 2x+3 0 Ix-7
VI—dx— ¥ V2 = 5x - 3x3
+1
4 a) Fmdj"—dx,
Vil = x7)
b) Hence find the exact value ﬂfr:;|—+-1—,¥ dx, giving your answer in the form p + g=, where
0 - X

p.geR.  (EDEXCEL)

§ If x = 5sin@ — 3, show that 16 — 6x — x* = 25¢co0s*f.
Hence, or otherwise, find

1
d. OCR
IJ{lﬁ-ﬁx-.ﬁj S
6 i) Express
x4 3 + Bx + 26
[x+ 1" +9)
in partial fractions of the form
b cex +d
x+1 N x2 49
i) Hence show that

fix)=

i+

3
J fix)ddy=3+4In2--=  (OCR)
o 12

T2 4+ 1lx+13
(3x +4)x*+9)
Hence show that

7 Express y = in partial fractions.

3
| n
idx=—=In26 4+ — OCR
J-‘ 3 2 O
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REDUCTION FORMULAE

Reduction formulae

We need reduction formulae to facilitate the integration of functions whose
integrals cannot otherwise be found directly.

An example of a reduction formula is

X =

2 . n—11z . .
J—:un"_rd_-: = J_sm" “vdx

0 oo .

which enables us to convert, for example, J-' sin®xdx into
0 0

. 4
sin“xdx.
T T

¥

This we may further reduce to Fﬁi'ﬁ:.\' dx, and hence to rsin”.x'¢r. which 1s
0

n 4]

3
Jt 1 dx,which we can integrate casily.
a

We usually obtain a reduction formula by changing the form of the integrand
into a product which can be integrated by parts. But we must exercise

discretion. For example, a possible product of | sin"xdx is J 1 = sin"xdy.

But this will not be helpful, as I 1dxis x and xé—j— sin” x 1s an awkward
X
integrand. Thus, we must use
1 x
rsin"_\' dy = ]-: sinxsin” ' xdx
.

]
because we can integrate sin v easily,

Hence, we have

T

. .
J>:iin.rsirr" xdy = | — 05 xsin” I:l:]
i

L9

o ]

- J_‘ —cosx » (1 — I)sin” “xcosxdx
1]

4
={+in=1) r sin® " 2xcos v dx
i

= (n - I}Fsin" “x(1 = sin“x)dx
1}

i &
=(n— I](F sin® “xdy - F:‘.in".r d.\')
0 lh]

We usually obtain the integral with which we started as one of the terms on
the night-hand side. So, we take this integral to the left-hand side. which gives

Eo

i
- > »
" Ji sin"xdy = (n— 13| sin" “xdy
I j

ot |

) n=11[z . ._-
= sin"xdx = [ sin” ” "xdx
0 K 0

Denoting F.ﬂin".rd.r.‘ by /.. we can express this reduction formula as
]

[ !.?={"_hl)!,,;
M
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Example 9 Use the reduction formula for Fsin"',rd.t to evaluate

X 0
3 a

J_ sin’ xdx,
0

SOLUTION
In the reduction formula [, = (

I —Fsm xdx-Ersm xdx
0 Tho

Using the formula again with n = 5, we obtain
k4

2 =ifsjn5xdx
5k

).f,_ 2, we put n = 7, which gives

h=2 x—g—fsin’xdr
Repeating the procedure with n = 3, we have

6 4 2[3.
I=—x—x—r5|ntdx
TT717573),

5 L
=aﬁ—xix:[—m51]2

7 5 3 0

6 4 2 16
=E=X=—X—-—=—

7 5§ 3 35

} 4
Hence, we find -Fsin’x dx = E
0 35

Similarly, we can find the reduction formula for * e*"cos"x dx, when a is not

o
equal to 0. In this case, the integrand is already a product, and ¢** is a term
which can be readily integrated. Therefore, we differentiate the term cos"x,
which gives

[ E |

2 | 2 PR _ .
]—:"cus'.rdx = [—e""cus":-:] - f ——e"peos" ' xsin xdx

1] a 0 [} i

The new integrand is not in the form of Fe“ms"_n and therefore we must
repeat the mh:grahun by parts, which gwf:s

J‘e cos'xdyx = [ t“cns"] --J' —e™cos” 'xsinxdx

=1 +1 {u — _IJ: [- (n — 1)e“cos" *x(1 — cos’x) + t:"‘cus"_r] d:c}
a a
=—--—J_[ (n — 1)e"(cos"*x — cos"x) + e""cos"x] dx
I n 2 ax L] iy a=2
= - 1J-[m:: cos'x — (n— 1)e"cos” “x]dx
a a lp
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|
Example 11 If /, :J ¥

ﬂﬁ dx, show that I, = (” — l).'.r_:-

n
SOLUTION

When we separate /, into a part to be integrated and a part to be
differentiated, we must take account of the following:

. J JFI__'._]' dx = cosh™'x This result is unlikely to be helpful.

d ( 1 ) X ) .
& — | ——— | = ———— This result increases the power of the
dx \vx -1 (x? - []’_} P

denominator, and so it also is unlikely to be helpful.

Hence, we avoid having to integrate or differentiate by itself. We

E]

=1

therefore separate ﬂ;%inlu .T:—l x X"~ ! because we can integrate
X .
t vxd = 1.
> T
S0, we have
1 i
x" X
I, = d: =J ¥ dx
Ju =1 * u\-’_rz—lx
i 1
={v":r'*'—lx.t""]u— Vai=1in— 1" *dx
i}
1 2 =3
(== 1) ="
=—(n-1 d:
- [ S
‘f x 3 )
= —n-1 - d
(n JJIJ(\-"'I:—] vxi =1 '
e _["_ I'Hfl_"l :"l—.
which gives
aly=(n—1)l,_; = f.,:(n_l).ﬂ,_;
n
as required.

Exercise 12B

11f FWS'Id.r = .I'," prove that nly = (n—= Dl a, (n > 1).
a

Evaluate
4 R

a) J—'cosﬁ.\'dx b) ‘I_’msT.t'd:r
o 0



10

1"

Find the reduction lormula for J.r"l:" dx.

!
If s, = J x"e “dx, prove that
0

L=nl,_,—¢ (n=1)
1

1
Hence evaluate J xe “drx
]

If I, = r tan"f dff, prove that
o
1

ly=——=0.: (n=1)
n—1

Hence evaluate

a) rmn*n de
L]

1
If 1, = J (In x)" dx, a) prove that }, = —nl, _,, and b) deduce that [, = (= 1)"n!
[

Prove that

n Jcosh"_\' dx = cosh" 'xsinhx + (n — 1 }Jcnsh" Txdy

1
Hence find J cosh’xdx.

1]

1
If 1, = J ¥'e* dx, prove that [, = le — 1
1]

Ifl, .= J-—"J—_—r dx, prove that
{In xy

4

X
(m— 11 .= (Inx)

Ifl,, = jr""[ln x)" dx, prove that

-+ (m +

b) r tan’fdo
4]

{n— 111,

1l—hrrlr.n =1

(m= 1, .= X" Mnx)* —ni, .

Given that [, = .F tan” v dx, show that
i

l, = —

= w2 (B2 ::l
n=1

8

I —
Hence show that [; = nl_" IWIEC)

a) Given that [, = [cush".\' dx (n = 0), show that

nl, =sinhxcosh” 'x+~(mn—=11,_. (n=2)

245
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EXERCISE 128

Giiven that 1, = J:‘-ec“xd.t.

a) show that

.
in=1, =tanxsec” “x+in-2, » n=zl

b) Hence find the exact value of | sec’xdx, giving vour answer in terms of natural logarithms
n

and surds. (EDEXCEL)

Find the value of each of the constants A, 8 and ¢ for which

| I | By -+ O
= -+
l+x (1+x (]l —x+x9
1
1
Jo (1 4 x%)
.

Given that /, = | (1 + %) dx, where n is an integer, show that
41

Hence evaluate

(3n+ 1M, =2+ 3nl, _|

rl

Hence evaluate | (1 + ) dx. {(EDEXCEL)
E L]

I
nIri = j A"(1 ~ x)*dx, prove that (2n + 3)1, = 2nf, ;. where n is a positive integer,
n

(]

| 12
ii) Show that J il - .1']‘- dx = :'iﬁ (NICCEA)

l

Given that [, = I x" cos mxdx for n = 0. show that
4}

=l 4vnn=10, s+n=10 forn=2

Hence show that
r 46 — =)

Meosaxdy = —— {OCR)
4] b4

Show that

160n = x" % px"
V16 = 2% (16 = x7)
Deduce, or prove otherwise, that if

d P 2
—[x Ale - x°)] =
d.\'[ Vil ]

.

- x7
[ = j e (X
il 1..-"“5 — X<}
then, forn = 2,

nl, = 16{n — I, _ 5 — 2"/3

Hence find the exact value of /;. (OCR)
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22 Show that

-;—1;[.-{1 + ) =@n+ D1+ ) —dn(l + £

1
The integral I, is defined by [, = l (14 7)de

Show that (d4n + 1), =4nl,_, + 2", {OCR)

|
23 Let /, =J cosh”x dx.
o
i) By considering
i{sinh xcosh” 'x)

X
or otherwise, show that

nl,=ab" '+ (n—1DI,_,
where @ = sinh(1) and b = cosh(l).

ii) Show that 7 = %{Eah’ +3ah+3)  (OCR)

24 1t 15 given that

I, = J‘x{lu xfdx (m=0)
i

By considering di[.ﬁlnx}"]. or otherwise, show that, forn = 1,
X

1 - 1
I, = EE" -Eﬂf.._l
Hence find [, leaving your answer in terms of e, (OCR)

25 For each non-negative integer i, let [, = j::os“ﬂ dir.

i} Show thatif n = 2, then
nl, = sinfcos" "0+ (n - i, _,

i) Show that rms-“ﬂdﬂ = Eﬂﬁ‘i INICCEA)
o

n>0 ned

26 I, = j
a) By considering I, , — I, or otherwise, show that

2sin{n + v

lyyz= I,
HES

£ .
1 sin by

dx, giving your answer in the form pu"'f + qu’ﬁ, where p and ¢ are
E S X

rational numbers to be found. (EDEXCEL)

b} Hence cvaluaicJ -
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L

iy If 1, , = Fsin"ﬂcus'ﬂdﬂ. show that
a

_m-—lf
m+n m=-2n

lrm’, ]

where m = 2.
iv) Using the result in part il and the similar result,

~n=1

fﬂ‘. L]

= 'fm’.rl—!
m-=+n

where n = 2, show that

Fsin“ﬂcns“ﬂ 4o = % (NICCEA)
o 512
x"
31 I=|———d
qu T
a) Show thatnf, = " 'Vl + )= (n—Dl,_5. n =2 2.
The curve C has equation
2 X
-r" e —— ] n
VTR

The finite region R is bounded by C, the x-axis and the lines with equations x = 0 and x = 2.
The region R is rotated through 2x radians about the x-axis.

b) Find the volume of the solid so formed, giving your answer in terms of r, surds and natural
logarithms.

An estimate for the volume obtained in part b is found using Simpson’s rule with three
ordinates.

¢) Find the percentage error resulting from using this estimate, giving your answer to three
decimal places. (EDEXCEL)

Arc length
Cartesian form
Consider two points, P and Q, on a curve. P is the ¥
point (x, ¥) and Q is the point (x + dx, y + dy).
Let s be the length of the arc from a point T, and ds As im Thmaon
the length of the arc PQ. 10y
Since ds is very small, we can approximate the arc PQ
to a straight line. Hence, using Pythagoras’s theorem,
we have

(6x)" + (63)" = (s)°

) X

Dividing by (5x)°, we obtain
(- ()
dx dx



EXERCISE 12C

By symmetry, the integral from x = —r to x = r is twice the integral from
x = 0 1o x = r. Therefore, we have

A= ZJ'EJtrd.r= [411”:]* = dnr
0 o

Hence, the surface area of a sphere is 4nr-,

e

Using the parametric form, x = rcosfl, y = rsinf), for the
rotated circle, we have

A= J_JJEa‘:rsinﬂv‘{rl sin“f + r2 cosifl di r

-1 f

_- -, -

- 3 * ]
=21 2 sindd = —4nr [cosﬂ]"‘l = 4nr
0

|

Hence, the surface area of the sphere is 4nr.

Exercise 12C

1
2

3

Find the length of the arc of x* = 3 from x =010 x = 3.
Find the length of the arc of x* = 6y from x = 1 to x = 2.
Find the length of the arc of the parabola x = ar’, y = 2ar. between the points (0, () and (ap®, 2ap).

Find the length of the arc of the cycloid x = a(r + sin/), y = a(]1 — cos ). between the points
f=0andt=nm.

X
c

Find the length of the arc of the catenary y = :*msh( ) between the points where x = 0 and

X =L

Find the area of the surface gencrated by rotating about the x-axis cach of the following.

a) Arc of the curve x = 2, v = 3¢, between the points where t = 0 and ¢ = 4.
b) Arc of the curve x = 1%, y = 2r, between the points where + = 0 and 1 = 2.
¢) Part of the asteroid x = acos’t, y = asin’r, which is above the x-axis.

d) Curve y = 53!, fromx =410 x =9,

e) Curve y = cosh.x, between x =0 and x = 1.

f) Curve y=e", fromx =1 tox =4

The diagram shows a wheel of radius @ which rolls along the ¥
line Ox. The centre of the wheel 1s C and P 1s a point fixed
on the rim of the wheel. Initially P is at O. When CP has
rotated through an angle 0, show that the coordinates of
P are

x = a(fl = sin ) y=a(l —cost)

Hence find the length of the path of P when the wheel rolls
through one complete revolution. (NEAB)




EXERACISE 12C

12 The parametric equations of 4 curve are

x = all —sini) y=a({l = cosi)

where a 15 a positive constant. Show that

dx'y dy :_ 2. . 32
(I) +(E)—4ﬂ sin“(44)

The arc of this curve between 1 = 0 and r = 2x is rotated completely about the x-axis. Show
that the area of the surface of revolution formed is

-

s
Emﬁ[ [1 — cos’( L o)lsin (4 nds
i
and hence find this arca. (OCR)

13 The curve C is defined parametrically by
x=3+e¢ cosr+sing) v=4+e lcoss—sinsd

Find the exact value, in terms of n and e, of the length of the arc of € from the point where
t = 0 to the point where r = {r.

This arc is rotated about the x-axis through one revolution. Express the area of the surface
generated as a definite integral. (You are not required to evaluate this integral.) {OCR)
14 The parametric equations of a curve are
x=13cost —cos3l y=3suntl—snid
Show that
dyy  [dyY . 2
— | +| == | = 3b6sin°0
(dfl) (dﬂ) ““
Hence find the length of the arc of the curve between the points given by ## = 0 and = %11,
(CCR)

15 The arc of the curve y = ¢* from the point where y = § to the point where y = ‘_% is rotated
through one revolution about the x-axis. Show that the area, S, of the surface generated is
given by

S= Enf Vi + ) dy

i

By using the substitution y = sinh u, show that

=r:[wsw—ln(1)] (OCR)
144 2

16 A curve C is delined parametrically by

1
x=2dl+nt y=2Xl-1)
where 0 < r< |, Find

) the length of C
i) the area of the surface generated when C is rotated through one revolution about the x-axis.
{OCR)
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. " - - o 3 R b K -
17 The curve C is defined parametrically by the equations x = }I =t y=1r,whererisa

parameter.
a) Show that (E) - (d—1) =+ 1)
dr dr
b) The arc of C between the points where r = 0 and 1 = 3 is denoted by L. Determine
i) the length of L
i) the area of the surface generated when L is rotated through 2= radians about the x-axis.
(AEB 98)
18 ¥
o
-T“ n o x

The figure above shows the curve C with parametric equations
x=acos’t y=asint 0<r<=
where a is a positive constant.

The curve C is rotated through 27 radians about the x-axis. Show that the area of the surface

of revolution formed is |27a” .

(EDEXCEL)

19 The arc of the curve y = x°, between x = 0 and x = 1, is rotated through 2x radians about the
x-axis. Determine the exact value of the surface area generated. (AERB 98)

20 The curve C has the parametric equations
x=e"%inf y=ccosfl for0<sf< %

a) Show that the area S of the surface generated when C is rotated through four right angles
about the x-axis is given by

5= zﬁnfel*‘m 0 de
0
b) Find the value of S. (WIEC)
21 a) ) Using only the definitions coshf = $(e” + ¢ ") and sinh # = L(e" — e™"), prove the
identity
cosh’fl — sinh’0 = |

i) Deduce a relationship between sech # and tanh 6.



IMPROPER INTEGRALS

b) A curve C has puramelric representation v = sech #, ¥ = tanh#.

e (XY (Y
i) Show that (dﬂ) +(dil) = sechf.

i) The arc of the curve between the points where 0 = 0 and ¢ = In7 is rotated through one
full turn about the x-axis. Show that the area of the surface generated is %g ™ square

units. (AEB9TY

22 a) Find Jcnsh:rsinh:dr.

The curve C has paramelric equations
x=cosh’t y=2sinht 0<r<?2
The curve C 15 rotated through 25 radians about the x-axs.

b} Show that the area 5 of the curved surface generated is given by

5

5= Srzl- cosh*tsinh rdr

a
¢) Evaluate S to three significant figures. (EDEXCEL)

Improper integrals

An improper integral is one which has either

& a limit of integration of +oc, or
o an integrand which is infinite at one or other of i1s limits of integration, or
between these limits,

In the first case, we replace +oc with », say, and then find the limit of the
integral as n — +o0. When this limit 1s finite, the integral can be found [see
Example 16). When this limit is not finite, the integral cannot be found (sce
Example 17).

In the second case, we replace one or ather of the limits of integration with p,
say, and then find the limit of the integral as p tends to the value of the limit it
has replaced (see Examples 18 and 19).

-1—., dx.

X

Example 16 Determine J

SOLUTION

The upper limit is ~c, so we replace it with n, which gives

=
J v =tim | L dx

R n-=ol ) X"
~ lim [—l] ~ tim (—lu)
R—n xl; wew n

EEESEEESESSEsisEaEmEE
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- Vi ] . .
- As n — oo, = = 0, which gives
- 1 n
y ==

. ~ e |
. lim (- L 1) =1
= m=x\ n
- 1+ .
. That 1s, we have
L] o

24 I
: J s dv=1
L] 1 X*
L
L 1 ) .
- This shows that the area under the curve vy = — 15
L] X
- 0 ]- z I 1z finite even though the boundary is of infinite length.
L]

]

Example 17 Dﬂenninej

l dx.
X

We have

o
[ Lax=tm [ Llax

1 X =l X

= lim [Inx]’

A= 0

= lim (Inn—In1)

M ==

which is not finite since lim Inn s oc.
R —

. l. .
This shows that the area under y = — is not finite
X

although the curve looks very similar to v =

=

which

2 8
&

X

has a finite area.

Example 18 Determine J N dux.
o vX

SOLUTION

This 1s an improper integral since the integrand, % is infinite when
X

x = 0. So, we replace the lower limit with p, which gives

"1 "
J—itzlimj — dx
X

o VX r—0J, /X
|
— i [z.‘-’]:r 2.2
fim [2+f], = fim 2 - 297

Since lin]]I 2./p =0, we have
F—u

1 T . |
P]r_{nni_ 2,/p)=2
That 1s, we have

1

0 VX
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SUMMATION OF SERIES

And the sum of the areas of all n rectangles “outside” the integral, shown in
Figure B, is

t,(a+fj—c:)h—u+r(a+2b-n)h-u+f(ﬂ+3h-a)h—a+
n n n n n n

+f(a+[rl— l]ﬂ) b—

n n

The actual value of the definite integral is between these two valucﬁ. As n tends
to infinity, these two sums tend to the same value.

a+|‘(n+b_a)ﬂ+/(a+2u)h_“+...]
n n n n
which gives

[ rﬁt]d:r—llm Zf(a+rh_ﬂ)b;u
n

r=10

Hence, we have

L] b .
J fix)dx = .I-iﬂ; [ﬂ,‘u}

Thal is, the integral is the limit as » tends to infinity of the sum of the series.

This method may be used to find upper and lower bounds of integrals and
series.

. |
Consider, for example, the curve y = —.,
x?
g

The arcas of the rectangles “inside’ j = dx are
s

1
9t "

L]

LD
4: » S.: L]
The areas of the rectangles “outside’ the integral are

L T
127 2 3
Therefore, we have

—

42

l St ],+L+lﬁ+,., > l #dx
28 4 1 Xx*
I l l l

—+—=+—=+=+
2 3 g 2

Since [ L dx = 1 (see page 260), this gives
| X=

"llcl <
ZE EDD

r=l Fous ]

1
2
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Example 20 Prove that
4 1.1 1 91
ST Ty T T < 7200
SOLUTION

Since we require terms %, we take the curve y = i}
x

The first two rectangles “outside’ the curve, areas L and #, are shown in

73
Figure C.
We could continue in a similar manner until we obtain
1 += : +. L > rl L dx
7?8 Eﬂ’ 7 x?
¥ . Vi
|
"l-|-|_|_|I ——
0 6 7 K g x o v f 7 ] x
Figure C Figure D

Using rectangles ‘inside’ the curve, as shown in Figure D, we obtain

| | r“l
—t b < — dx

» 20° & x?
Evaluating both integrals, we obtain
r’ 1 [ 17 ! 1 4
—_— dx = —_—— T e —— — T —
7 X3 2x? ], 2 x II- 441

Therefore, we have

4 1 1 1 91
W <ptet
441 83 200 7200
as required.
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EXERCISE 12D

Exercise 12D

Find the value, where it exisis, of each of the following.

1 I{i-dr 2 [ ax 3 [t
oxt ot Bl =xr
s T o I o x
4 ~ dx 5 | — dx 6| - dx
o 1+ x- Jo Jo X%
-5 -I " i . I
7 - dx 8 = dx 9 dx
o X = a* Jo 4 Jax+2

10 J-: tanxdx
{

}

11 a) Use integration by parts to hind lx In xdx.
]
b} Explam why [ xIn xdx exists, and obtain the value of this integral. iINEAR)
D

12 a) Wrile down the value of lim

e
b) Evaluate
_ i
[ )e
1 Ax v 4]
giving your answer in the form Ink, where & is 4 constant to be determined. {NEAB)

cos (£ nx¥)
In x

13 a) Find (in terms of the constant k) the limit of asx - .

L]
b) i} Explain in detail how Z - d - is related to the area under the curve y = T
n + X

r=1] '

between x = and x = 1.

Y
-

X

)

+ =

(‘!"nu should include a diagram. You may assume that is an increasing function

for0 = x = l.)

i) Evaluate the himit L = I!'m Z -

] '\.;__Fn---r-

L
r |
iily Show that L < < L4 —. iMEL
II ; o n
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13 Numerical methods

Which is so small that it searcely admits of calcularion,
DAVID HUME

Solution of polynomial equations

Most equations cannot be solved using algebraic procedures which give exact
solutions, and so we have to turn to numerical methods to solve them.

While there are several, distinct numerical methods available to use, they all
have one property in common: if we repeatedly apply any of the methods to a
problem, we will normally be able to obtain the solution to any desired degree
of accuracy.

Initially, we need to determine an interval in which the
root lies. Hence, generally, to find fix) = 0, we find f{x)
and f(ff). If these are of opposite sign, and fix) is
continuous between x and f, then fix) = 0 has a root for
some x satisfying x < x < fi.

If f(x) is not continuous, it may be as in the graph on the
right, where f(1) and f(—1) are of opposite sign, and ;
f{x) # 0 for any value between —1 and 1.

1
=]
—
=

Example 1 Find an approximate value for the root of

fix)=x'+5x-9=0.

SOLUTION

We have
fil)=1+5-9=-3
fi2)=8+10-9=9

We know that f(x) is continuous for | < x < 2. Hence, there is a root of
f(x) = 0 lor a value of x between | and 2.

To find the value of the root more accurately, we could repeat this
method, finding f(1.1), f(1.2), f(1.3). and so on, noting that the values of
fix) change sign between 1.3 and 1.4, and then finding {{1.31), fi{1.32).
€lc.

The method used in Example 1 is time-consuming, although with a sensible
choice of values of x it can be reasonably effective in finding a solution
without too many unnecessary calculations.



SOLUTION OF POLYHOMIAL EQUATIONS

The procedures which are normally used to solve polynomial equations such as
that in Example 1 are interval bisection, linear interpolation, the Newton—
Raphson methed, and iteration.

Interval bisection

As the name suggests, if we know that there 15 a root of f{x) = 0 between x = a

and x = . we trv x = ”—;-ﬁ-]_ The sign of fi.x) determines which side of

@+
2

s

- the root hes.

The method is repeated until we obtain the same answer (o the degree of
accuruey required.

Example 2 Find, by interval bisection, an approximate value for the root
of vy =" + 5y — 9 =0, correct to two significant figures.

SOLUTOMN
fil)=1+5-9=-3
M=8+10—-9=9
Therefore, the root lies between v =1 and x = 2,
We now put x = 1.5, which gives
fil.5) = 1.875

We note that f{1.5) and f{1) are of opposite sign. Therefore, the root lies
between x = | and x = 1.5

We continue to bisect the interval in which we know the root lies, until we
obtain the required accuracy. Hence, we have the following results.

f1.25) = —0.726K73

f11.25) and f{1.5) of opposite sign: root between x = 1.25 and 1.5

[(1.375) = 0474609375

f(1.25) and {1.375) of opposite sign: root between x = 1.25 and 1.375

fi(1.3125) = —~0.17651367

f(1.3125) and i(1.375) of opposite sign: root between v = 1.3125 and 1.373
134375 =0.145111

f1.34375) and fi1.3125) of opposite sign: root between x = 1.3125 and 1.34375

Only now are we able to siate that the solution of f{x) = 015 1.3 to two
significant figures.

Interval bisection 1s & very long and gencrally slow method. Also, it Tails if the
graph of f{x) is not continuous over the interval in question, as in the case of

the graph of fix) = x + Lon page 268.
X

{The actual value of the solution is 1.329 744 122 to ten significant figures.)
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Linear interpolation

A more efficient method of progressing from f(l) = =3 and f(2) =% is to
deduce that the root of f(x) = x* 4+ 5x — 9 = 0 is likely to be much nearer to |

than to 2, since |[(2)] > [f(1)].

This intuitive approach is formalised in linear interpolation, where the two
points (1, —3) and (2,9) are joined by a straight line and the x-value of the

point on this line 1s calculated.

Using similar triangles, with the root at x = 1 + py,

we have

3 9 Al

Therefore, a better approximation to the root of

f{x) = 0 is 1.25, which gives
fi(1.25) = —0.796 875
Hence, the root is between 1.25 and 2.

Using similar triangles again, we have

P _075-p
0.796875 9
= 9.796875p; = 0.75 x 0.796875

= p>=0061004784

Therefore, the second approximation to the root of

f(x)=01s 1.311004 784, which gives
f{1.311 004 784) = =0.191 708 181
Hence, the root is between 1.311 004 784 and 2.

fix) §
9
1311 Tu 784
]
T I/ D688 995 216 — p, 3
Cﬂ.m 708 181
Repeating the procedure again (see figure above), we obtain
P _ 0.688995216 — p,
0.191 708 181 9

fix) §

-

fix)

(]

L=

-t

5; ]
! 0.796 575

= 9.191708 181p; = 0.688 995216 x 0.191 708 181

= py=0.014370127

270

075 =p

'r//
C |

¥
F
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SOLUTION OF POLYNOMIAL EQUATIONS

Therefore, the third approximation to the root is 1.325374912, which gives
f(1.325374912) = -0.044947 145
Hence, the root is between 1.3253749]12 and 2.

[1.1!11

1.325 374 912

1 rl
0 A ‘/ 0674625088 — p, 3

(.044 947 145

-y

Repeating the procedure yet again (see figure above), we obtain

ps _ _ 0.674625088 — p,
0.044947 145 v

= 9.044947 145p, = 0.6T4 625088 = 0.044947 145
= pg = 0003352421099
Therefore, the fourth approximation 1.328 727 333 is to the root.

Both the fourth and third approximations are 1.33 correct to two decimal
places. To check that this is the correct answer to two decimal places, we find

f(1.335):
f(1.335) = 0.05427
which has the opposite sign to f{1.326).
Hence, the root is 1.33 correct to two decimal places.

Although linear interpolation is much quicker than interval bisection. it still
does not take into account the shape of the graph of f{x) between the starting

points.
The procedure which does is the Newton-Raphson method.

Newton—Raphson method

If = 1s an approximale value for the root of

fix) =0, then x — ﬂ—i'.'] is generally a better
.

t"r

]

approximation.

Pz, Eex)

Consider the graph of y = fix). Draw the
tangent at P, where x = a, and let the
tangent meel the v-axis at T.

We see that the x-value at T is closer than
2 is to the x-value at N, where the graph do

cuts the axis. n//};/’r o

=
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Using triangle PTQ, we have
Gradient of tangent = % d
= (@)= % h
0 M T == i
Qr=1@ /
() —1
The x-value of the point T is
a=-QT=a - fl) *
()

which is a better approximation to the root of f(x) = 0.
When the root of fix) = 0 is not close to a, the method
may fail. For example, in Figure A, the next x-value
found is at T, which is further from the root than =z is.

And in Figure B, f'(z) = 0, which is unhelpful. —

In its iterative form, the Newton-Raphson method gives

B [N Figure B

B T

Example 3 Use the Newton-Raphson method, with an initial value of
x = |, to find a root of f{x) = x* + 5x — 9 to three significant figures.

SOLUTION

Let 2 be the required root.

Differentiating fix) = x* + 5x — 9, we have
f(x)=327 45

Putting =; = 1, we obtain
fla;))=145-9=-3
fllx))=345=8

Lising Newion-Raphson, we have

o H=)
Tl Ly r‘,{j“]
which gives
f{xy) 3
= - =] +== 1375
x3 X r;[l:” -+ 3

Hence, we have

g f1375) | oo 0474609375

—— = ].1 = 1.330 5271
"(1.375) 10.671 875

I3=l.
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Example 4 Use x,., = %[r: + 1) to find a solution to
fix)=x-6x+1=0.

SOLUTION

As in the previous methods, we need to determine an interval in which the
root lies.

Putting x = 2 and x = 3 in f{x) = x’ — 6x + 1, we obtain

i2y=-3 and M[(3) =10
Therefore, there is a root of f{x) = 0 for a value of x between 2 and 3.
{Also, since f{l0) = 1 and f{1) = —4, there is another root of f{x) = 0 for a
value of x between 0 and 1.)

Using x,., = é{xﬁ + 1), with x; = 2, we have

I
x3==(2+1)=1.5
X2 ﬁi )

which gives
. _—.%u.s’ +1) = 0.729 1666

xy = 1023128
We see that these values of x are not converging to the required root.
Alternatively, starting at x; = 3, we have

28
6

] 3 -
.TIZEH + 1) = =44

X = %[[4%]-‘ +1]=17.1049

We see that these values of x are not converging to the root either.

sends the iteration to the smaller root, whereas
starting above the root sends the iteration off to fo) = x
infinity. We can graphically represent these results by
a staircase diagram, as shown on the nght.

In Example 4, we note that starting below the root fix) /

r 1

&

i -
/ i k. 'i
Starting podnt
"'J’ helow: roa
Starmag point
abowve rood
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Example 5 Starting with x = —1, use the iteration v, ., = ;—._1-,,- -2
to find the root to three significant figures.

SOLUTION

1 4 .
E.\',,‘ - 2 with x, = —1I. we have
1 IR
xp=g—2=—]+=-183333

L{~1.83333F - 2= —135 = ~1.4398
xg = —1.654488883  xo = —1.543777756
Xo=—1.602791707  x- = ~1.571843124

xg = —|.588218 199 vy = —1. 579593825

Using x,., =

X1

Therefore, the root is —1.38, correct (o three significant Ngures.

Eventually, we would find that the root is —1.582 575695,

The result in Example 5 1s represented graphically fialh
by a pattern which spirals into the root, as shown
on the right. Hence. it is called a cobweb diagram. T =

[ —
fix) =3
Two other patterns which you are likely to meet are shown below,
[{EY] firid
My = x
_‘.
1
1__,.-—"""'"...-' .
-
4] [8) .
K X
* x
| ! T
Starting ot Starting peind Stasting point
ebow ol abane root

In the patiern on the left, the iterative values step directly inte the root from
above (or below). The pattern on the right spirals out from the root.
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EXERCIBEE 13 A

dy Use the ileration
X = é-[i Flanx,)?  x =065

to find f to three decimal places.  (EDEXCEL)

flx)=2"=x'

a) Show that a root, a, of the equation [{x) = 0 lies in the interval 1.3 < o < 1.4,
b) Taking 1.37 as vour starting value, apply the Newton - Raphson procedure once to fix) to
obtain a second approximation to this rool. Give your answer to three decimal places.
iEDEXCEL)

Show that the equation
'+ x—3A=10

has a root between 0 and 1. Use the Newton-Raphson method to solve the equation, giving
vour answers correct 10 five decimal places. Record your values of vy, vy, x3, ... to as many
decumal places as vour calculator will allow. {(WIEC)

Given that x is measured in radians and {{x) = sinx — 0.4y,

a) find the values of f(2) and f{2.5) and deduce that the equation f{x) = 0 has a root x in the
interval |2, 2.5]

b) use linear interpolation once on the interval [2. 2.5] 1o estimate a value for x, giving your
answer Lo two decimal places

c) using 2.1 as a first approximation to 2, use the Newton-Raphson process once to find a
second approximation to z, giving vour answer to two decimal places. (EDEXCEL)

The eguation x° + 3x° = | = 0 has a root between 0 and 1. Use the Newton-Raphson method,
with initial approximation 0.5, to find this root correct 1o two decimal places.
Give a clear reason why it would be impossible 10 use the Newton-Raphson method with

imitial approximation 0. (OCR)

Use the Newton-Raphson method to find, correct to three decimal places, the root of the
equation x° — 10y = 25 which is close to 4. (OCR)

fix) = coshy — &
a) Show that the equation f{x) = 0 has one root, z, between 1 and 2.
A second root, fi, of the equation f(x) = 0 lies close 1o 6.14.
b) Apply the Newton-Raphson procedure once 10 fix) 1o obtain a second approximation to fi.
giving vour answer Lo three decimal places. {(EDEXCEL)
fix) = e — 2x°

a) Show that the equation f{x) = 0 has a root 2 in the interval [-1,0] and a root fi in the
imterval [1. 2]
b) Use linear interpolation once on the interval [1. 2] to find an approximaton to fi, giving
vour answer to two decimal places.
¢) Apply the Newton-Raphson process twice to fix), starting with —0.5, to find @n
approximation to z, giving vour final answer as accurately as vou think is appropriate.
(EDEXCEL}

r
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18 a) Solve x = 0.5 + sin x by each of the following two methods.
i) An iterative method, other than the Newton-Raphson method. starting with x; = L.5.
Give a solution which is correct to five significant figures,
i) The Newton—Raphson method, applied once only, starting from v, = 1.5

b) Calculate the gradient of 0.5 + sin x, where x = 1.5. Comment on its relevance to one of the
methods used in part a. (NEAB/SMP 16-19)

19 Given that f{0) = 0 — \/(sin#), 0 < @ < L n. show that
a) the equation f{f) = 0 has a root lying between {x and 4x
cost)
b) () =1-——
O 2+/(sin )
¢) Taking ;= as a first approximation to this root of the equation f(#) = 0. use the Newton-
Raphson procedure once to find a second approximation, giving your answer to two
decimal places.
d) Show that (@) = 0 when sinfl = /5 - 2.  (EDEXCEL)
20 The figure shows the line with equation y = 5x 't
and the curve with equation y = e*. They meet ¥=Xx
where x = a and x = fi. Approximate values for x
and § are 0.2 and 2.5 respectively.

a) The iterative formula a, ., = -}c"* is used to
find a more accurate approximation for z.
Taking a; = 0.2 use the iterative formula to
obtain a;, a3, as and as, giving your answers to
four decimal places.

The Newton-Raphson process is used to find a - 5 ]
more accurate approximation for ff. o i [

=

b} Taking fix) =e" — 5x and a first approximation to § of 2.5, apply the Newion-Raphson
process once to obtain a second approximation, giving vour answer to three decimal places.

c) Explain, with the aid of a diagram, why the Newton-Raphson process fails if the first
approximation used for ffis In 5. (EDEXCEL)

21 a) The cubic equation
X =9 4+3=0

has a root that lies between 0 and 1. Use the Newton-Raphson method with starting value
xo = 0.5 1o find this root, giving your answer correct to six decimal places.
b) A rearrangement of the equation

x+3=2tanx
gives the iterative formula

af x. 43
Xp+1 = lan '("T)

By considering the condition for convergence, show that this iterative formula can be used
to find any root of the equation. (WIEC)
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EXERCISBE 13A

22 The diagram below shows part of the graph of the function f, where

fr
dxt — 122 +9x 4 3

flx) =

a) The graph of [ has a minimum turning point at (@, £ ) and a maximum turning point at
(b, 2). Use calculus to obtain the values of @ and b.
b) The line x = ¢ 15 a vertcal asymptote to the graph of .
i} Write down an equation which ¢ must sausfy.
i) Use Newlon's method, with x; = —0.2, to find an approximation to the value of ¢
correct to four decimal places.

; . . . E . . .
Newton's method uses the tteration x, . = x, = pr = o produce successive approximations

pix.)
to a solution of the equation p{x) = (. (SQACSYS)

23 The equation f{x) = 0 has a root at x = a, which is known to be close 10 x = xq. By drawing a
suitable graph to illustrate this situation, denive the formula for the first iteration of the
Newton- Raphson method of solution of fix) = 0. Hence explain how the general formula is
obtained,

It is known that the equation [[x) = 0. where
fiv)=3x" — 8x° + 4
has three distinct real roots of which two are positive.

Use the Newton-Raphson method with starting value —1 to determine the negative root
correct to three decimal places.

It is known that the other two roots lie in the narrow interval [0.75,1.25]. Use a diagram to
explain why the Newton-Raphson method may be difficult to use in the determination of these
rools.
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It is proposed to determine the root near x = 0.75 using simple iteration with the iterative scheme
3}
e —
8 2x,

Show that this may be suitable to obtain a solution in the neighbourhood of x = 0.75.

Ansl =

Using x = 0.75 as a starting value and recording successive iterates to three decimal places, use
simple iteration to determine this root 10 two decimal places.

The third root is known to lie in the interval [1.2,1.25]. Use three applications of the bisection
method to determine a more accurate estimate of the interval in which this root lies.
(SOACSYS)

Evaluation of areas under curves

When we need to find the area under a curve but are unable to integrate the
function, we have to use a numerical methed. The two most common
numerical techniques are the trapezium rule and Simpson’s rule.

Trapezium rule
We can find the area under a curve by drawing equally spaced lines parallel to

the y-axis. These will produce a number of trapezia of equal widths, as the
figure shows.

S

™

o B % * & b

If we divide the x-axis from x = a to x = b into n equal intervals, then we will
obtain n trapezia.
Let the y-values of the curve at these x-values be vy, vy, ..., ¥q. as shown.
The area of the first trapezium is 4 /i(y + y1), where & is the width of cach strip.
The area of the second trapezium is L h(y, + y3).
Hence, the total area of the trapezia is
Lh(yo+p)+ 10y + p2) + o+ L0y + ¥
By collecting like ferms, we obiain the trapezium rule, which is

[ Areq = %[_ru + ¥+ 2+t F Vai)]

where h is the width of a strip and y, and y, are the first and last ordinates.
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EVALUATION OF AREAS UNDER CURVES

Example 6 Find, by the trapezium rule, an approximate value l'm'J e'dy,
|

Lise six mtervals,

SOLUTION

First, we divide the v-axislromx=ltox =7 T ¥ et
{the limits of the imegral) into six strips (as requested).

Hence, the x-values of these points are x = [, 2. 3, 4,
3, 6. 7, as the figure shows.

The corresponding v-values arc e'. ¢ e’ ¢ %, " ¢'. /

Therefore, using the trapezium rule, we have

i i |
Area= —[ro+ )y, +2Ar+r32+...+ ¥, 0| A
| | |
l 7 1,3 g I I .
%;IEI-‘.-E-‘-3{!{!'+E'+E‘TC":CH] s 1T 3 3 4 5 &7 ';
which gives
Area = 1183.590416 or 11836 to ldp
Note
e The accurate answer to Example 6 1s ¢” — ¢'. which is 1093.914877 or 1093.9
to ane decimal place.
e The answer obtained by the trapezium rule can be made more accurate by
using more strips of smaller width.
Simpson’s rule
The trapezium rule is rarely very accurate because ¥
we usually use too small a number of trapeaa to yead bt
approximate the area to be found.

We obtain a better approximation by imposing a —
known, integrable quadratic curve which passes :
through points on the onginal curve.

Simpson’s rule is based upon the use of a 5 5
quadratic curve which passes through three : :
conseculive points. Thus, Simpson’s rule finds the k 0 h 2
approximate value for a pair of strips.

Consider the quadratic curve v = ax® + by + ¢, passing through three
consecutive points, (i, v ). (0, v) and (-4, 1), as shown on the right.

Whenx=0,y=) = ¢=y i]

Whenx=hy=);, = yi=alr+bhiy ]

Whenx=—hv=w = yy=ah —bh+ 7 13]
Adding (2| and (3], we obtain

Yo+ ¥3 = 2ah® -+ 2y, [4]
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Using integration to find the area under the guadratic curve, we have

h
Area of pair of strips = f (ax’ + bx + c)dx

h

Substituting from [1] and [4], we obtain

hyg + y2 —
3

Ty
Area of pair of strips = ), 2yh

h
==(o+4n +n)
3L1fr "+ 1

Using a number of such pairs of strips, we have

Total area = ;-’U-u +4y + ) + %[_r; +dyy + yy) + gm +dyvs + ¥) + ...

h
£ i(_vu I o o D O o P o DI S | D DA S |

By factorising, we obtain Simpson’s rule, which is

h
Area = E[_ﬂ.'.;. e i e LT o T o I S T e LA C o L S | |
Or

Area m% % Strip width (First + Last + 4 = Sum of odds + 2 x Sum of evens)

Note There must always be an even number of strips. That is. » must be even.

-

Example 7 Find, by Simpson’s rule, an approximate value for j e'dr.
Use six intervals. :

SOLUTION

First, we divide the x-axis from x = 1 to x = 7 (the limits of the integral)
into six strips (as requested).

Note Since we are using Simpson’s rule, we ensure that we use an even
number of strips.

Hence, the x-values of these points are x = 1, 2, 3, 4, 5. 6, 7. (See top
figure on page 281.)
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CHAPTER 11 NUMERICAL METHODS

i
= | ———
J:J{-i.ﬁ — 9 !

a) Using five equally spaced ordinates, obtain estimates for A, to four decimal places, by
means of
i} the traperium rule
i} Simpson’s rule.

b) Find

1
—_—dx
J Vidr = 9)
and hence evaluate A4, giving your answer to four decimal places.
g) Which of yvour estimates in part a 15 the more accurate? Give a reason for vour answer.
{EDEXCEL)

o
6 I,,:J-—-—-—-—J“ gy dx
a) Show that nf, = " "\ Al + )= (n—= 1M, ., n =2,
The curve C has equalion
o
VIR

The finite region R is bounded by C, the x-axis and the lines with equations x = 0 and x = 2.
The region R is rotated through 2x radians about the x-axis.

-
b

=0

b) Find the volume of the solid so formed. giving your answer in terms of x, surds and natural
logarithms.,

An esumate for the volume oblained in part b 13 found using Simpson’s rule with three
ordinates.

c) Find the percentage error resulting from using this estimate, giving your answer to three
decimal places. (EDEXCEL)

7 For 0 < x < x, the curve C has equation v = In(sin x). The region of the plane bounded by €

. . ™ I . . .
the x-axis and the lines x = ry and x = S ls rotated through 2n radians about the x-axis,

Show that the surface area of the solid generated in this way is given by S, where

_;J*

Use the trapezium rule with four ordinates (three strips) to find an approximate value for S,
giving your answer to three decimal places. {AEB 97)

Inisin tJ ldy
sinx |

8 Use the trapezium rule, with six intervals, to estimate the value of
3
J In{l + x)dx
o

showing your working. Give your answer correct (o three significant figures.

Hence write down an approximate value for

L
J in /(1 + x)dx {OCR)
0
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EXERCISE 13B

8 Use the trapezium rule with five intervals to estimate the value of

J" Vil + idx

showing vour working. Give your answer correct 1o two decimal places.

By expanding (1 + ,T:}J-' in powers of x as far as the term in x*, and integrating term by term,
obtain a second estimate for the value of

X
f Vil + ¥ )dx
i

K

giving this answer also correct to two decimal places. {OCR)

L
10 Derive Simpson’s rule with two strips for evaluating an approximation l-:nJ fix)dx.
]

1
LUlse Simpson’s composite rule with four strips to obtain an estimaie uf[ cosi{x — 2)Inx drx.

(Use five decimal place arithmetic in your calculation.)  (SQA/CSYS)

11 Use the composite trapezium rule with four sub-intervals to obtain an approximation to the
definite integral

4
J_ xsin(mehdy

{Give vour final answer o four decimal places.) (S0OACSYS)

12 Use the trapezium rule, with four intervals, to estimate the value of

showing vour working and giving vour answer correct to
two decimal places.
. / | ¥
The diagram shows part of the graph of y = ‘\“ (.v — ;)
iy State, with a reason, whether this use of the trapezium
rule gives an underestimale or an overestimate of the

value of j‘ -'fJ (.'I.' - l) dx.
| l||II X i

i) State, without further calculation, whether increasing
the number of intervals in the trapezium rule from
four to eight would lead to a larger or a smaller estiumate

fior J ‘I.flj (.'r - l) dx. Give a reason [or vour answer. {OCR)
t ¥ -1|
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STEP-BY-STEP SOLUTION OF DIFFERENTIAL EQUATIONS

Hence, we have
W01 =24+ 01In(0+ 2)
= W0.1) = 2.0693
We repeat this procedure with the values obtained for y and j—l when
x = 0.1 now being treated as the original values, and the new ill.aluc for ¥
being found for x = 0.2, Thus, we obtain

w(0.2) = {0L1) + fi(ﬁ)
dx =i

= {0.2) = 2.0693 + 0.1 In(0.1 + 2.0693)
= 0.2) = 2.1467

Repeating again, we have

W0.3) = {0.2) + ;,(ﬂ-[)
Tl | e

idx
= W0.3) = 2.1467 + 0.1 In(0.2 + 2.1467)
= p(0.3) == 22320

Example 9 Use a step length of 0.2 to find #(1.4) for ::—1 = ¢*™" given that
X

y=3whenx=1.

SOLUTION

Using (i‘-) = 21700 e obtain
dx fy I/

¥ =W +h(£)
S dx /y

which means that

v at new value of x (i.e. when xis 1.2)=
y dy y
= y at onginal value of x + & x d_ at onginal value of x
X

Hence, we have
WLy = 3+ 0.2

= (1.2} = 3.3433

We repeat this procedure with the values obtained for v and g'r when
X

x = 1.2 now being treated as the original values, and the new value for
being found for x = 1.4, Thus, we oblain

dy
L4y == v(1.2) + & —
’ ! (d-\').-l:‘

= ."{ 1.4) = 33433 & '].2{.""‘“1 2
=5 {1.4) =~ 3.6307
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CHAPTER 13 NUMERICAL METHODS

Example 11

s
&y _ ooy
dx?

Using a step length of 0.1, find y when x = 1.3, given that y = | when
x=1and y=1.2whenx=1.1.

SOLUTION

We use

(d{}') o T 2oty
dx? /; h?
with
Yo as the value when x = 1.1
yyasthe valuewhen x= 1.1 4+ h= 1.2
y_y as the value when x = 1.1 —h =1
Hence, we have

(ii) L 1.2 - 21D + (D)
= 1.1

dx? 0.1
- (g_;_) LD -2441
dx? /o 0.01
When x = 1.1 and y = 1.2, we have
d’y _ 1.2
which gives
11.2) - 1.4
= = ].580 38
0.01

= w1L2)=24-1+0.0158038
= w1.2) = 1.4158
We repeat this procedure, using

(d:."') - Yi=2w+y,
0

dx? I

with
¥o as the value when x = 1.2
yyasthe valuewhenx=12+h=13
y_y as the value when x = 1.2 - h=1.1
Hence, we obtain

-
=ny

(d__}) _ (13) = 20(1.2) + y(L.1)
xm]2

dy? 0.12
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STEP-BY-STEP SOLUTION OF DIFFERENTIAL EQUATIONS

For x = 1.2 and y = 1.4158, this gives

(d_;) 14003 & M13) = 28316+ 12
d."."z .:,_,1'_r_ ’ - I].ﬂ]

= w1.3)= 2.8316 - 1.2+ 0.014003
= ¥1.3) = 1.6456
Therefore, when x = 1.3, y = 1.6456, correct 1o 4 dp.

Example 12
d*y .
—= =] + XxC0§ ) + sIn ycos y
dx?
Using a step length of 0.035, find y when x = 1.1, given that :—} =1
X

and y =0 when x = 1.
SOLUTION

. dy
Because we are given y and d—]' at only one value of x, we need 1o use a
X

first-order step-by-step approximation to find a second value for y.

We know the value of y when x = 1, so x = | becomes the onginal value
for x. We require a step length of 0.03, hence we use

( d:}’) =+
d.\.:" 0 h‘:

¥o as the value when x = |

with

¥ as the value when x = 1 + h = 1.05
¥y as the value when x = | — h =095

The most accurate first-order step-by-step method is the double-step
approximation

(E) — Y1 — ¥y
dx/y 24

which gives
| = N1.05) = 3(0.95)
0.1
= 0.1 = 1(1.05) — 1¥0.95) (1]
2. p = T ;
Using (d {) P w with x = 1 and y = 0, we obtain
d—l“' 0 .‘J"
(d:_'.') _ (1.05) = 2 x 0 4 3(0.95)
d_".": = h.!
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When x = 1 and y = 0, we have

(d'-‘") = 1+ 1cos0+sin0cos0 =2
dx* x=1

which gives
W 1L.05) + (0.95)
0.0025
= 0.005 = y(1.05) + »(0.95) [2]

2=

Hence, adding [1] and [2], we obtain y(1.05) = 0.0525.

We have now two values of y, namely y(1) and »(1.05), so we are able to

use
(d:__'.') _h=2wn+r
d.‘l"z ] h!

to find y when x = 1.1

Thus, we have

(gﬁ_) L1 = 26(1.05) + w(1)
dx?/, 05 0.052

When x = 1.05 and y = 0.0525, we also have

(E) = | 4 1.05¢cos0.0525 + sin0.0525cos 0.0525
xm | 05

dx?
= 2.100957
which gives
. | -
2100957 = 2{1:1) =2 x 0.0525+0

0.05°
= 11L.1) == 0.0025 x 2.1009 57 + 0.105

=  wL1)=0.1103
Therefore, when x = 1.1, y = 0.1103, correct to 4 dp.

Taylor’s series

The other main method for solving differential equations numerically is to use
Tavlor's series (the derivation of which is beyond the scope of this book):

ﬁ,’x]—f{n}+{'rfa'_ll"{ﬂ}+“ ﬂ] Mia }+h 3 a)’ (@) + ..

We use this series to find values of I‘[.rZL or v, near a given value of f{x) (see
Example 12). Its most common application is in the special case when a = 0,
which gives

x X
fix) = f(0) + xf'(0) + - 1(0) + ?t“ (0) +
Notice that this i1s the same as Maclaurin’s series, which we studied on pages

177-9. In the numerical solution of differential equations, when we refer to a
series we always mean Tavlor’s series, though it is rarely seen in its full form.
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EXERCISE 12C

Given that

dy 3, 8.3
— =X + 2y
dx*

and that y = 0 and —ji = | when x = (), expand y as a power series in {x — 1}. Hence find »,
X

correct to four decimal places. when a) x = 1.1, and b) x = 0.9,

Given that y satishies the differential equaton

ﬂ —a S g

dys 7 dx

dy . . .
aund that y =0 at x =0, and EF — 2at x =0, use the Taylor series method 1o find a senies for
X

v in ascending powers of x up to, and including, the term in &°. (EDEXCEL)
Obtwin the Tavlor polyvnomial of degree two lor the function sin x near x = E Estmate the
value of sin 46" using the first-degree approximation. {SOA CSYS)
Obtain the Taylor polynomial of degree two. in the form (0.5 + h) = ¢y + ayhi + it for the

function fix) = near v = 0.5,

X =

State, with a reason, whether [{x) is sensitive 1o small changes in the value of x in the
neighbourhood of x = (0.5, (SQACSYS)

d '1‘ —-—_1'd—1' +3vr=10
dys dx
dr
wherev=latx=0and —=2atx=10.
X
Find v as a series in ascending powers of x, up 1o and including the term in x°. (EDEXCEL)
T P o . - . d |3 . 1
Given that y satisfies the differentinl equation e (x+yY,andy=latx=10,
X
2 i
a) lind expressions for d—'— and d_11
dx? dy

b) Hence, or otherwise, find y as a series in ascending powers of x up to and including the term
in .

¢) Use your series to estimate the value of v at x = —0.1, giving your answer to one decimal
place, {EDEXCEL)

Obtain the series solution in ascending powers of x, up to and including the term in x°, of the
differenual equaton

. dy
given that y = 3 and d_ =2atx =1, (EDEXCEL)
X
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12

13

14

15

a) Use the approximation of -"'—;‘—“ ES (d—') to estimate the value of v at x = 0.1.
T X/o

b) Using a step length of 0.1 with the approximation hT__;IE = (%L) and your answer from
=1 XA

part a, estimate the value of y at x = 0.2.
¢) Using a step length of 0.1 again and by repeating the application of the approximation used
in part b, estimate the value of y at x = 0.3. (EDEXCEL)

The function y(x) satisfies the differential equation
g': = f{x, y)

where fix, y) = (2* +;.1]J-'. and W0) = 1.
a) Use the Euler formula
Vet = ¥+ hi(x,. ¥,)
with & = 0.1 to obtain an approximation to y (0.1).
b} Use the improved Euler formula
Yesr =¥+ hf(x.p0)

together with your answer (o parl a o obtain an approximation to w(.2). giving vour
answer correct to three decimal places. (NEAB)

The motion of one point of a turbine blade is given by
dx dy
C¥ _ay+3  Yos_ay
di 4 di

Initially, x = 2, ¥y = 0.

a) Use a step-by-step method with dr = 0.05 to estimate its position one tenth of a second
later.

b) Find a second-order equation, in x and 1 only, which gives the displacement x at any time 1.

¢) Write down a first-order differential equation in x and y only. Solve this equation by an
exact method, leaving yvour solution in the form fiv) = gix). INEAB/SMP 16-19)

The function ¥(x) satisfies the differential equation
dy
—=f{xy
dx f(x.y)

where f(x,y) = 2+ 2 and w(1) = 1.
X

a) Use the Euler formula
¥reat = Fr + ﬁf{-tri_"r]

with & = 0.05 to obtain an approximate value for y(1.2), giving your answer correct to three
decimal places.
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17

18

EXERCISE 13C

b) i) Show that the integrating factor for the above differential equation is —.
v

ii) Solve the differential equation to find y in terms of x, and use it to show that
W 1.2) = 1.638, correct to three decimal places.
¢} Hence find, correct to one decimal place, the percentage error in using Euler’s formula in
the evaluation of »{1.2). (NEAR)
The varable v satisfies the differential equation :;'l ="+ and y =0atx = 0.5
"

Use the approximation (j_‘) A _r_1_I—_t'.. with step length h = 0.01 to estumate the values of y
XA ]

at x = 0.5, x = 0.52 and x = 0.53, giving vour answers to four decimal places.  (EDEXCEL)

a) The ditferential equation

CILSL S Jo
de dr

can be written as two simultaneous first-order differential equations,

i) If one of these equations is v = ‘é;‘*’_ write down the other equation.
{
i) Use a step-bv-step method with two steps of dr = 0.05 to estimate the value of x at
=01, giventhat at r =0, y =0 and v= 2,
b) 1) Find the general solution of the differential equation

LI RPL S
dr? de p
if) Find the particular solution if x = 0 and d—l = 2 at 1 = (. Hence calculate the value of x
t

when = 0.1, giving vour answer to two decimal places. (NEAR/SMP 16-19)

The equation {{x) = 0 has a root at x — a4, which is known to be close 1o x = x, Use the
Tavlor series expansion of f{x) about ¥ = ¥, to derive the formula for the Newton—Raphson
method of selution of f{x) =0

It is known that the equation f{x) = 0, where
fix) = x' — 6" + v+ 1
has four distinct roots of which two are positive.
Show that exactly one root of the equation lies in the interval |2, 3].
Use the Newton-Raphson method to determine this root correct to two decimal places.

It is proposed to determine the other positive root using simple iteration. Show that the
equation can be rearranged to give the iterative scheme

21,

6 3 fx,

and that this may be suitable to obtain a solution in the interval [0.5,1].

Vil = —2 4+

Using x5 = 0.5 as a starting value, and recording the successive iterates to three decimal places,
use simple iteration to determing this root to two decimal places.

State the order of convergence of the iterative scheme used and explain how the data from the
iterative process can be seen to agree with this. (SQA CSYS)
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14 Matrices

Marwematics s nol a book confined within a cover aigd bovnd between brazen claps, whose
cantents if needy only patience 1o ransack.
JAMES JOSEH SYLVESTER

A matrix stores mathematical information in a concise way. The information is
written down in a rectangular arrav of rows and columns of terms, called
clements or entries, cach of which has its own precise position n the array.

4
% | 15 a matnx, but its meaning depends on the context.
?

As in Chapter 6, 1t could represent a vector, meaning 4i + 8j + 7k. In football,
it could represent the number of goals scored by three dilferent clubs. In a
shop, it could represent the number of packets of three different items bought.

Notation

We normally represent matrices by bold capital letters. For example.

4 11 5
M=11 4 2
1 2 1

Example 1, on page 300, illustrates an application of this notation.

The order of a matrix

The order of a matrix is its shape. For example, the matrix (3 _f _?5)

has order 2 » 3, since its elements are arranged in two rows and three columns.

When stating the order of a matrix, we must always give first the number of
rows, followed by the number of columns.

4
8 | is a column matrix and has order 3 = 1. since its elements are arranged
1

in three rows and only ong column.

The matrix (4 5 7} has order | = 3 and 15 a row matrix.

289



CHAPTER 14 MATRICES

When the number of rows and the number of columns are equal, the matrix is
called a square matrix.

Note (4,8,7) with the numbers separated by commas is a point. (4 ¥ 7)
with no commas 1s 4 matrix.

Addition and subtraction of matrices

Only when two matrices are of the same order can we add them or subtract
them.

To add two matrices of the same order, we proceed as follows, element by

element:
a b ¢ p r a+p b+q c+r
d e f|+]s ul=\1d+s e+1 f+u
g h i VoW X g+v h+w i+x

We subtract two matrices of the same order in a similar way.

= el

We cannot evaluate (;:) - (
£

j:) because the matrices are not of the same

Multiplication of matrices

Multiplying a matrix by a number

To muluply a matnx by, for example, k£, we multiply every element of the
matrix by &£. Hence, we have

a b ¢ ka kb ke
kld e f|=|kd ke Kkf
g oh i kg kh ki

- —

" Example 1 FindM+2BwhtnA=(: ;" ;)und
||

- (3 2 4

- B‘(-l -3 3)'

% SOLUTION

E We have

[ ]

™ — 4 7 -1 3 2 4
: 3”‘*'“‘3(3 ! 5)”(—1 -3 2

dog
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e  Multiplying out the RHS, we obtain

L 3

P (0 (5 4 )
. 24 G 2

E which gives

L ]

L (3 %))

Multiplying one matrix by another

We eannot multiply any matrix by any other matrnix.

To allow multiplication, the orders of the two matrices concerned must
conform 1o the following rule:

The number of columns in the first mairix musi be the same as the
number of rows in the second matrix.

For example, if the first matrix has order 3 = 3, the second must have order
3 x something. as in the case of A and B below, which we will muluply

together:
23 1 1 2 0
A=| 0O -2 3 B=|1 -2 1
O 2 3 0 2 1

To multiply A by B, we start by taking the first row of matrix A, (2 3 ).

l
and the first column of matrix B, | 1
]

We then muluply the first element of the row by the first element of the
column, the second element of the row by the second element of the column,
and the third element of the row by the last element of the column. We then
add up these three products.

This gives the element in the top left-hand corner of the mairix AB, which is
2x14+3x1+1x0=3

So, we have
AR={ " " *

MWext, we take the second row of matrix A.{0 =2 3, and the first column

|
of matrix B, | |
]

Again, we multiply each element of the row by the corresponding element of
the column and add up the products.
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This gives the second element of the first column of matrix AB, which is
0x1-2x1+3x0=-2

S50, now we have

5 77
AB=| -2 7 ?
T 1 ?

We repeat the procedure on the second and third columns of matrix B,
eventually obtaining

5 0 4
AB=| -2 10 1
2 2 5

(Notice that at each stage it looks as if we are finding a scalar dot product of
tWO vectors.)

Generally, the product PQ produces a matrix which has the same number of
rows as P, and the same number of columns as Q. Hence, if P has order p = ¢
and Q has order 1 x g, then PQ has order p x g.

Multiplication is not commutative

It is important to note that the multiplication of two matrices 1s not
commutative. That is,

AB # BA
Therefore, we must ensure that we write the matrices in the correct sequence.
(See Exercise 14A, Question 1, page 306.)

Also, to avoid ambiguity when referring to the product of A and B, we musi
specify their sequence. For example, in the case of AB, we say either that A

premultiplies B or that B postmultiplies A.
There are, however, three excepiions o the non-commutative law:

& Multiplication of a zero matrix by a non-zero matrix of the same order (see

page 304).
» Multiplication of a square matrix by its inverse (see page 304).

e Multiplication of a square matrix by the identity matrix of the same order
(sec page 303).

We also note the following:

o If AB exists, BA does not necessanily exist.
e The matrix A® is A x A, which can only exist if A is a square matrix.

Multiplication is associative

We find that for any matrices A, B and C, which are conformable for
multiplication,

A(BC) = (AB)C
provided their sequence is not changed.
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IDENTITY MATRICES AND ZERO MATRICES

Known as the associative law, this allows us to decide whether we start the
multuplication with the first pair of matrices or the second pair. Consequently,
we can refer to the product ABC without ambiguity.

Determinant of a matrix

As stated on page 81, determinants always consist of a square array of
clements. It follows, therefore, that only a square matrix can have a
determinant.

From our definition of a determinant. we see that it is the scalar representation
of 1ts originating square matrix, and gives the value associated with that
matrix.

If A 1s a square matrix, we can find the determinant of A, denoted by det A or
|Al, by the method shown on pages 80-1.

Determinant of the product of two matrices

The determinant of the product AB is the same as the product of the
determinant of A and that of B:

det{AB) = det A = dei B

Identity matrices and zero matrices

An identity matrix 15 any square matrix all of whose elements in the leading
diagonal are |, and all of whose other elements are zeros. It is denoted by L

Hence,
{10
=(o 1)

is known as the 2 = 2 identity matnx, and

I o 0
I=10 1 0
Do 1

is known as the 3 x 3 identity matrix,

When we multiply 1 by any square matrix M of the same order as I, I behaves
as umity. That 1s,

IM=MI=M
ZLero matrices

When all the elements of a matnx are zeros, it 1s known as a zero matrix, and
15 denoted by 0.
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INVERSE MATRICES

Finding the inverse of a 3 X 3 matrix

We proceed in the following order:
1 Find the value of the determinant, A, of the matrix.
2 Find the value of the minor determinant of each of the elements.

3 Form a new matrix from the minor values, inserting them in the positions
corresponding to the elements from which they were derived. Also insert a
minus sign at each odd-numbered place, counting on from the top left entry
of the maitrix. These minor values with their associated signs (+ or —) are
called the cofactors of the clements of the original matrix.

4 Find the transpose of the result.

Hence, we have

a b e\ [ A4 B C B
d ¢ f} =—| -0 E -=F
g h i Al -H 1

where 4. B.C. ... are the minor determmuinants of the elements a. b, e, . ..
respectively.

| 2 5
Example 2 Find the inverse of M, where M = | 2 3 4

I 1 2
SOLUTION

First, we calculate det M, which gives
detM=1i6—-4)-2{4-4)+52-3)= -3

Mext, we calculate the minor determinants, obtalning

20 -1
B R |
~7 -6 -1

Then, we msert those minor values in their approprate positions, together
with their associated signs (+ or —), to form the matrix (o be transposed.

I 2
[
inserted three places from the top left corner of the matrix, for which the
associated sign is minus, giving —(—1) = +1. Thus, +1 is the cofactor of
element 4.)

{For example, the minor value of clement 4 is = ~1. This 1s

Hence, we have

Y UL T S
=3\ 7 46
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CHAPTER 14 MATRICES

s We obtain the transpose by reflecting the matrix in its leading diagonal
*  (see page 84), mving

L]

: 21 =T -3 -1 3

" M'=-—{0 -3 6 |]=]0 1 =2

: VAR
Exercise 14A

1 Evaluate PQ and QP, where

r=(33) m o= (2 )

What do you conclude from your results, and why has it happened?

2 Find the inverse of each of the following.

2 (3 5) 2 (i)
4 11 5 3 4 =2
d |1 4 2 e | 2 -1 5
1 2 1 -3 4 1

-1 0 1
3 Find the inverse of the matrix ( 2 0o 1 ) in terms of &. (NICCEA)
kK =1 0

cosfl —sinf
sinf cos i

A" = (cu&nﬂ' —smmi])

4 Given the matrix A = ( ) show by induction that

sinnl  cosnt
for all positive integers n. (WIEC)

5 a) Calculate the inverse of the matrix

1 x -1
Alx)=13 0 2 X #
1 1 0

a
The image of the vector (h) when transformed by the matrix (
c

4
vector | 3 |.
5

b) Find the values of a, b and «. (EDEXCEL)

k|

— el
—_—

) 15 the

o |
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EXERCISE 144

5 23
& Given that the matrix A = (3 2 I) and that the determinant of A = 20, find A",
2 5 2
(WIEC)
7 The matrices A and C are given by
I P02
A=(1 2 2 C=13 10
200 3 [
Find the matrix B satisfving BA = C. (WIEC)
. 1 . . 1 0
8 Let matnx A = | 1 and I be the unit matrix 0o 1)
i) Show that A = 3A - 21
) By wrting A = A » A’ and using part i. show that A’ = 7A - 6l
i) For positive n, use the method of induction to prove that
A= -DA+(2-21 INICCEA)
9 The matrix A is given by
1l a 0O
A=1-1 1 0
a 5 |
where a 2 —1.
) Find A"
il) Given that @ = 2. find the coordinates of the point which is mapped onto the pomnt with
coordinates (1, 2, 3) by the transformation represented by A, {OCR)

10 The matnx A is given by

(37

where a # 1. Find the mverse of A,
Hence, or otherwise, find the point of intersection of the three planes with equations
x—ypy+z=0
hwr+:-=0

x4+yrtaz=13 (OCR)

11 Matnices A and B are given by

1 0 O 1 1 1
A=]1 =1 0D and B=( 0 1 -1
1 0 o 0 o 2

where a # 0.
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TRANSFORMATIONS

|
14 a) Given that A = ([I
|

=t -
Pd o= 1

)_ﬁnd Al

10 9 23

b) Using A'=| 5 9 14|, show that A’ — 547 + 6A —1=0.
9 5 19

¢) Deduce that A(A —2IHA -31) =L

d) Hence find A~'.  (EDEXCEL)
I 00

15 Giventhat A= | 0 2 1 }, use matrix multiplication to find

ool

]

a) AY b)) A

¢) Prove by induction that

1o 0
A'=10 20 -1 nzl
0 o0 1

d) Find the inverse of A", (EDEXCEL)

Transformations

A number of transformations of a two-dimensional plane onto a two-
dimensional plane, B°, and of a three-dimensional space onto a three-
dimensional space, B', may be represented by a matrix M, where

()-()

means that the image of (x, v, 2) under the transformation, T, is (x5 yi.21).

Linear transformations

T is described as a linear transformation of n-dimensional space (where
n=223,...)when it has the properties

Tiix) = ATix) and Tiix + pyv) = AT(x) + uTiy)
where A and g are arbitrary constants.

We may represent a linear transformation by a matrix. For example, in three
dimensions, we might represent T by the matrix

a b e
M=|d ¢ [
g h i

ans



TRANSFORMATIONS

Example 8 Find a) the invariant points and b) the invariant lines of the

. N
transformation whose matrix is - .

5

SOLUTION

The invariant points are the points (x, ¥) which sansfy
(4 —1)(.1‘) B (1)
2 3 vi o\
From this, we obtain the following simultancous eguations:
dx-y=x = =y i
x+Sy=y = x=-4y [2]

Substituting [1] into (2], we have

2y = —4(3x)
= 2yr=-—|2x
= x=I

The only solution to eguations 1] and 21 s v = y = 0.

Therefore, the origin (0,0} is the only invariant point under this
transformation.

The line ¥ = mx + ¢ is invariant if points on 11 map onto points on the
same line, but not necessanly onto the same points.

Thus, the general point, (¢, nee), on the lineg y = mx should map onto
another point, (7, mT 1, on the line. So, we must selve the equation

(2 ) 0) = ()
2 3 my mT
Multiplying out the LHS, we obtain
(M--m}r)___( T ]
(2 < Smeje mI
Theretore, we have the simultaneous equations
4 =mp=T
{2+ 5mit=mT
which give
d-m 1

245m m
Cross-multiplving, we obiain
dm—nr =2+35m
= wm4+m+2=0

This equation has no real roots, and so the transformation has no
invariant line.
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CHAPTER 14 MATRICES

Consider the anticlockwise rotation by % about the origin in B*. Every line is

rotated, and so there are no invariant lines. Also, there is only one invariant
point, namely (0, 0).

Any rotation (except by the angle 0° or 180°) in two- ¥
dimensional space has no invariant lines. For example, we

can see from the figure on the right that the image line can

never lie along the object line, unless # = 0° or 180".

However, in three-dimensional space, a rotation must have
an invariant line, namely the line about which the rotation
occurs. In three-dimensional space, a plane always maps
onto a plane unless the matrix is singular (that is, det M = 0).

When the matrix is singular, a plane sometimes maps onto a
line or a point. Similarly, a line always maps onto a line unless
the matrix is singular, in which case the line might map onto

a point.

Eigenvectors and eigenvalues

An eigenvector of a linear transformation T is a vector pointing in the direction
of an invariant line under the transformation T.

For example, let T be a reflection in the line y = x. Then (1, —1) is on the
invanant line y = —x, but it maps onto (-1, 1).

The eigenvalue for the eigenvector (_ll ) is =1, since all the points on the line

¥ = —x map onto points whose coordinates are —1 times the original
coordinates.

To summarise, if M is the matrix for a transformation T. then

M(3)=4(3)

means that (;) is an eigenvector of T, and 4 is the eigenvalue of T associated

with (‘)
.l-|

In this case. we have

(1 )G)=-C)

In three-dimensional space,

G0

I1a

2

Image line

Oibgect line



CHAPTER 14 MATRICES

1
Hence, ( 1
1

Example 10 Show that
|

A= 1

2

0
2
0

1

If | -1
-2

1

Al -1

=2

Hence, we obtain

[ 1
A )
\ -2
{1
= A -I)
\ -2

We note that

1
Al -1
-2

we can write the eigenvector for 3 as (

) (4

has the same form as Ax = Aix, therefore (

Therefore, the direction of the cigenvector is (

2
2].
1

(4
:)

Find the associated eigenvalue.

) 15 an eigenvector of A, then we have

)

where 4 is the eigenvalue associated with (

)

|

|
-1
—d

and its associated eigenvalue is 3.

ale

1)

)

Fdf=—

) is an eigenvector for the eigenvalue 3.

Since any scalar multiple of an eigenvector is also an eigenvector,

) 15 an eigenvector of the matrix A, where

) 15 an eigenvector of A
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0 1 2 A
P=(-2 1 z) P'=| 2 -1 -2
|

1 0

— td D

Ih"""\-\—l-""'.
Il
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e
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— e

Il
e
[ e
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(T
.“""“--—l—"'d

That is, we have
P'MP =D
The diagonalisation of a symmetric matrix is given in Example 11,

Example 11 The transformation T is represented by

3 4 -4
M=| 4 5 0
4 0 1
Find

a) the eigenvalues of M

b) their associated eigenvectors

¢) a matrix. P, so that P"TMP = D, where D is a diagonal matrix whose
diagonal elements are the eigenvalues.

SOLUTION
a) To find the eigenvalues, we have
Mx = ix
= M-iDx=0
= M=il=0
which gives
3I-1 4 -4

4 5-4 0
—4 0 -4

B=A5-1-D—-4x4l-)-4x45-7)=0
=9t —9i4+81=0

=0

Factorising, we obtain
(A=3WA+INi=9) =0
= Ai=139-3
Therefore, the eigenvalues of M are 3,9, —3.
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DIAGONALISATION

b} When 4 = 3, we find the associated eigenvector from Mx = 3x. which
gives

3 —4

4 Ly X
4 5 0 v] =3y
-4 0 i - z
Ix+dy—4dz=3xr = dy—-4:=0 1)
dx+5r=3y = 4dx+y=0 12]
—dx+2=32 = —dx =2z 3
Putting x = ¢, we obtain, from (2] and [3], vy = =2rand = = -2r.

|
Therefore, one cigenvectoris | -2
N

¥ 3
Similarly, we find the other eigenvectors are { 2 | and | -1
-1 2
¢) From part b, we have
l 2 2
P=]|-2 2 i
-2 =1 2
!
We find that the magnitude of each of the eigenvectors | -2
_
2 2
2 Jand | -1 }s3.
=] 2

Therefore, normalising the eigenvectors, we obtain respectively

i 2 2
5 -
£ : and -
i _ i
i E]
which give
L = 2
] i k)
_ — i = _ 1
= . . i
- ok :
i ] H
Hence, we have
F-t =8\ /3 4 o/t & 4
T F . | 3 3 |
PMP=|+% 3« * 4 5 0 -4 & -3
2 _1 4 -4 0 1 -2 -1 2
i 1 i1 k]

Iz



CHAPTER 14 MATRICES

which gives

] SR L]
il

1 -2 -2\ 3
pPeM=[6 6 -3||-2

-2 1 =2

30 0
=109 0
00 -3

which is a diagonal matrix with the cigenvalues of M as its elements.

I
tarfe—
B

We noticed in Example 7 (page 312) that the transformation composed of
i) a one-way stretch in the x-direction, scale factor 3

i) a one-way stretch in the y-direction, scale factor 9

iil) a one-way stretch in the z-direction, scale factor 3

iv) a reflection in the xy-plane

was represented by

0o o0
N=109 0
0 0 -3

By geometrical consideration of the actual transformation, we can deduce that
the eigenvectors of this transformation are the three mutually perpendicular

1 0 0
vectors (l]) . (] ) and (ﬂ) with associated eigenvalues 3,9, —3.
0 0 1

We have just found that the transformation represented by

3 4 -4
M=|4 5 0
4 0 |

also has three mutually perpendicular eigenvectors with associated eigenvalues
3.9, —3. Thus, these two transformations (Example 7, page 312, and Example 11,
page 320) are the same transformation but about different axes: that
represented by N has its one-way stretches in each of the three mutually
perpendicular directions i, j, k, whereas that represented by M has its one-way
stretches of the same scale factors in the three mutually perpendicular

;I'_ ]
i j k]
" " 5 : 1
directions | —+% 1 -3
-2 -1 2
2 3 3

Naturally, both matrices have determinant —81, being the scale factor of the
volume of the enlargement, which is the volume of the image of the unit cube.

322



THE CHARACTERISTIC EQUATION

Henge, the transformation X" = Mx, where

34 -4
M=[ 4 s o
4 0 |

with respect to axes in the direction of the eigenvectors becomes the
transformation X' = DX, where

i o 0
D={0 9 0
0 o -3

which 1s the diagonalised form of M.

The characteristic equation

On page 316, we mentioned that the characteristic equation of the matrix

(34

a6l Ni—6=0

LT ]
B

tad Id

s

where the values of 4 are the eigenvilues of M,
M also satisfies this charactenstic equation. Hence, we have
M- 6M 4 1IM — 61 =0
From this equation, we can find M ™',
Postmultiplving by M ™', we obtain
MM oMM MM -6 =0
= M -_6M+-IlI-6M"'=0
which gives

CURUIPILEY SR SR
6 6
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qurcls_a 14B

1 The matrix A is given by

Give a full description of the geometrical transformation represented by A°. 1DCR)
. , 10 . . .
2 The matrix C is 0 2) The geometrical transformation represented by C may be

considered as the result of a reflection followed by a streich. By considering the effect on the
unit square, or otherwise, describe fully the reflection and the streich.

Find the matrices A and B which represent the reflection and the stretch respectively.  (OCR)
3 The matrix M is given by M = (:} _II )

Describe fully the geometrical transformation represented by M.

The matrix C is given by

C= 3 %lvﬁ—-ll
=43 LR

C represents the combined effect of the transformation represented by M followed by the
transformation represented by a matrix B.

) Find the matrix B.

i)} Describe fully the geometrical transformation represented by B. (OCR)

4 The matrices A and B are given by

3 -4 1 0
=GF) =62
Under the transformation represented by AB. a triangle P maps onto the triangle ) whose

vertices are (0,0), (9, 12) and (22, —4).

I Find the coordinates of the vertices ol P.
i) State the area of P and hence find the area of Q.

iii) Find the arca of the image of P under the transformation represented by ABA ™, (OCR)
| . | 1]
SletA=| =1 0 =1 [].Writedown the matrix A — 21, where 2 € & and 1 is the
-1 1 0

3 » 3 identity matrix.
Find the values of 4 for which the determimant of A — 41 15 zero. (SOACSYS)

8 The mairix P is defined by
p 1 =2
(4 )
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EXERCISE 148

|

i) Deduce the cartesian equations of the invariant lines of T, and prove that they are

pod A
S ]

b) i} Determine the eigenvalues and corresponding cigenvectors of the matnix [

perpendicular.
c) Give a full geometrical descniption of T. IAER 98}
4 -1 0
15 GiventhatP=|1 5 3 |.finddetPand P '
21 1
The 3 = 3 matrix M has eigenvalues —1, 2, 5 with corresponding eigenvectors
4 -1 0
l 3 3
2 1 l
respectively.

iy By considering MP, or otherwise, lind the matrix M.
i) Find the characteristic equation for M.
iv) Find p, ¢ and r such that M~ = pM° + gM + rL. (MED

16 A lincar transformation of three-dimensional space is defined by v’ = Mr, where

x X 2 1 =1
ri= |y r=|v M=|-1 0 3
! = 2 0k 4

a) Show that the transformation is singular if and only if & = 2.
b) In the case when k = 2, show that M represents a transformation of three-dimensional space
onto a plane and find a cartesian equation of this plane. (NEAR)

17 The vectors a. b and e, given below, are lincarly independent.

l ] |
a= 2 b= | 3 e= | 2
—1 4 ]
Find =, ff and v such that the vector
7
d= 5
—14

can be expressed as a linear combination of a, b and ¢, in the form

d = xa+ fib+ e (NEAB)

18 The matrix A is defined by

11
A=|1 Kk 1
11 &

a) Find the determinant of A 1n terms of k.

b) The matrix A corresponds to a linear transformation T in three-dimensionai space. When a
region in three-dimensional space is transformed by T its volume, V', is increased by a factor
of four to 41, Find the possible values of k. (NEAB)
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19 A linear transformation T of three-dimensional space is defined by r' = Mr, where

| | |
) 5 2 A
N * L1 | |
B B | |
N

a) Show that every point on the line x = v, z = 015 invanant under 7.
b) Find M’ and hence show that M* = 1, where 1 is the 3 » 3 unit matrix.
¢) Given that 7 is a rotation, state

i) the axis of the rotation

i} the angle of the rotation.
]

d} Write down the image under I of the unil vector ﬂ) . and hence indicate by means of a
|
diagram the sense of the rotation. (NEAB)

20 a) The matrix A and a non-singular matrix M are defined by

5 =L 0 0 -1 0
A=}t -1 10 2 M=|0 -1 =2
¢ 3 1 2 3 6

Show that MFAM = 41, where M’, the transpose of the matrix M. is given by

0 o 2
Mf=1| -1 -1 3
n =2 6

and 1 denoles the 3 x 3 unit mainx.
b) A closed surface § in three-dimensional space is defined by the equation

524107 + 22 —2xy +6pz = 4
Verify that this equaton can be obtained from the equation
r'Ar=4 (")

where r = (

X
¢) A lincar transformation L is defined by R = M 'r.where R = ( ]') and M 1= the matrix
&

e g

) ,F' ={xyz)and A is the matrix defined in part a.

defined in purl a.
i By using the relationships
r=MR and ¢’ =R'M'

where RY = (X ¥ Z), in equation (*), or otherwise, show that L maps the surface S on 1o
the surface of a sphere of unit radius centred at the origin which has the equation

X ¥z
liy Show that detM ' =L



15 Further complex numbers

In his Miscellanea analytica {1730}, Abraham de Moivee presented further analytical
trigamametric revufts (some formudated ar early as I707 ), making wse of complex mumbers,
Although ke ofd mor srate what is now knows ag de Moivee's thearem, it is clear that he was
making use of i

ALRERT . LEWIS

De Moivre’s theorem

On page 8, we found that
{cos @ + isin O)cos ¢ + isingh) = cos(f + @) +isin(ff + &)

Hence, we have

(cos i + isin ) = (cos# + isin @) cos# + isin )
= cos 200 + isin 20

The general case of this result is known as de Moivre's theorem. which states
that, for all real values of n,

[ (cos ) + isin )" = cosnll + 1 sinnt?

When n is not an integer, then cosnfl + isinafl is only one of the possible
values.

Proof when & is a positive integer

This proof is an example ol proof by induction (see page 159).
We assume that the statement is true when n = &. Hence, we have
{cos ) + isin M = (cos kO + isin ki)
= (cosl +isin®* "' = (coskd + isinkf)cos# + isin )
Using (cos 0 + isin 0Wcos ¢ = i sin ) = cos (0 + ) + i sin{l! + ), we obtain
{cosf +isin @' = cos(k + N6+ isin(k + 1)#
Therefore, statement is true for n =& + 1.
When n = 1, we have
{cosfl +isin¥)" = cosf +isin @
and
cosnfl + 1sinnf! = cos 0 -+ isim
Therefore, the statement is true for # = 1.

Therefore, de Moivre's theorem is true for all values of 7 = 1. That is. for ali
positive integers.
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Proof when n is a negative integer

When n is a negative integer, n = —p, where p is a positive integer. Hence, we
have
fcost 4+ isinth" = (cosfl <+ isind)™"
" {cost + isinfnr

Using de Moivre's theorem for the positive integer p, we obtain
1 ]

(cosf +isint)?  (cosp# + isin p)

_ cos pfl — 1sin pff
 (cos pl? + i sin phicos pli — i sin ptf)

which gives
|
icosll - isin

= cos ptt — isin pi]

But n = —p, hence we have
cos pl) — isin pl! = cos(-—nfll) — i sin (—nft)
= cosntl + 1sinnl
Therefore. we have
{cosfl +isind)" = cosnf -+ 1510 ni)

for all negative integers.

Example 1 Find the value of {cosff 4+ isin a4y,
SOLUTION
Applying de Moivre's theorem, we have

(cosil + isin® = cos 50 + 1sin 50

Example 2 Find [cus (E) t isin(:-)] ;

SOLUTION

Applving de Moivre’s theorem, we have

o (§) is§)] ol <5) 1o +5)
() ()
o () ()] =1 (men(3) =0 mesn(5) =)
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Example 3 Find [sin (;) +icos G)} "

SOLUTION
Using cos (% - H) = sin f, we obtain

s (%)Hm(%)]"i E‘Zi ga;ﬁ:m@r

which gives

6
[sin (%) +ims(g~)] = -1 (sincecosm = —1 and sinn =0)

Alternatively, we can proceed as follows:

[Sin G) +im5(§)]; {i[ms (%) » G)]}*-
el

. -6
sin (-E) + icm@) = i%[cos(—2m) +isin(—=2m)]) = —1 x 1 = —|

Therefore, we have

() ) -

as above.

Caution You will have noticed that

SERNE] —

and hence you may have deduced that
{cos® — isin#)" = cosnfl — 1sinni?

However, this cannot be used as a correct version of de Moivre's theorem,
which is only applicable to (cos @ + isin )"

Thus, if you are asked to use de Moivre's theorem to find the value of, say,

[ms (%) - isin(-;-) ] . you must change this into [-:-r.‘-s (- %) +isin ( = g) ] "

as shown in Example 3.
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OE MOIVRAE'S THEOQOREM

Example 4 Find the value of (1 = i),
EOLUTION

Initially, we convert (1 +1)* into its {r, ) form, and then use de Moivre's
theorem. Hence, we have

0+ = {vafeos(2) +iun(2)] )
- 3t [eos (2) i (%)

= deosw + 15N 1)
which gives

(1+i) = —4

) i
Example 5 FFind the value of ———,

P ¥ (4 - 4iy
SOLUTION

First, we convert 4 — 4i into its (r, ) form, and then use de Moivre's
theorem. Hence, we have.

S
N Ill:\ﬁ {m(_ﬂ s (_E)]

Using de Moivre's theorem, we obtain
¥ = ) {r:m (E) -+ 18N (3—r):|
(-4 128V2 3 3

128v2\ V2 2

which gives

1 1 .
=—(=1=+1)
(4 -4y 256

333



CHAPTER 15 FURTHER COMPLEX NUMBERS

Exercise 15A

1 Using de Moivre's theorem, find the value of each of the following.
- =
a) (cos 0 + isin 0)° b) (cos 20 + isin 20 c) |cos (g) + isin(g)
| n \1° | I |
q n .o
. f’“s(a)*”'“(a)] ®) (Cos 26 + isin 20)° i (n’) - (n)"’
cos | — ) +i1sin| —
I 6 6/ ]
r i0 9
g) -r:as (l?n) +isin(2—;):| h) [ms (- %) +isin(-l—ﬁg)]

2 Simplify each of the following.
a) (cos 30 + isin 30)(cos 70 + isin 78) b) (cos 58 + isin 50)(cos 6 — isin 64)

=G +=E)]
s (5) -0 (3)]

3 Simplify each of the following.

o+ +0-i

a) (1 +i)° b) (2 - V3i)° e) (3 - V3i)
d) (1 i) e) (24 2v31) n (2i - v3)°
4 Simplify each of the following.
a) (cos0 — isin0)’ b) (sinf —icosd)*
c) I d) I
(sin@ + icos ()’ [ (::) , (ﬂ)] "
SmM|— | —1CD5] —
5 5
5 Show that

cos 2x + 1sin 2x
cos 9x — isin9x
can be expressed in the form cosnx + isinnx, where n is an integer to be found. (EDEXCEL)

nth roots of unity

When n is not an integer, de Moivre's thcorem gives only one of the possible
values for (cos ! + isin #)", which is cos nfl + i sin nfl.

However, (cos# +isin ﬂ]* can take n different values, as we will now show.
We let
(cos @ + isin H}% = rlcos¢h +ising)
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Example 6 Find the value of (—64)".

SOLUTION

Expressing —64 in the form r(cos @ + isin#), we have
—64 = 64(cosw +isinm)

which gives
(—64)* = 64¥(cos & + i sin )t

=2 [ms(%) - ih‘in(%)] (from de Moivre's theorem)

Using symmetry, we find that the other roots are as shown in the diagram

below right. That is,

2o (5) +i50(3)]

P
—
-

Since all of these values can be expressed simply in the form a + ib, it is

common to give these answers in the form

iﬁil.ﬂ:i
(3+)

Example 7 Find the values of (=1 — v3i).

SOLUTION

Expressing —1 — +/3i in the form cos § + isin ), we have

~1-V3i=2 cﬂs(—%’t) +i5in(—%‘t)]

Therefore, from de Moivre’s theorem, one value of (-1 — ﬁiﬁ 15

e 3) (-3l () o
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nTH ROOTS OF UNITY

By symmetry, the other root is as shown in the diagram
on the right. That is,
_r'"_1-

——— +-

2

bada

'\,-"E .
5 1

Therefore, we have

(-1 —»fji){r:j:(ﬁw%ﬁi) _

Example 8 Find the solutions of 272" = &,

SOLUTION

We take the cube root of both sides, remembering 1o multiply one side of
the resulting equation by each of the three cube roots of unity, taken one

at a time. In this case, it is simpler to multiply +'8 by the three cube roots.

Hence, we have
270 =8
= 3Iz=vl1x2

From page 18, we know that +/1 has the following values:

| 1 V3, I V3,
2t Ty
Using +/1 = 1, we obtain
N
x=2 = =z==
3
. LYy 3.- "
LUsing v 1 = —-!} - él_ we oblain
pu
Ir=—1+vV3 = :=—l+1"‘i
3 3
" e 3. &
Using v'1 = —%—"é:. we obtain
P
Ir=—1 - V3 = ."—--I'—'-'El
3 i

Example 9 Find the solutions of 162F = (= — 1)°.

EQLUTION

We take the fourth root of both sides, remembering 10 multiply one side
of the resulting equation by each of the four fourth roots of unity, taken
one at a ume.

3ar




EXPONENTIAL FORM OF A COMPLEX NUMBER

This is the exponential form of 4 complex number.
Expressed generally. we have
s=reosl 4 isinth = z=rev
We can use the exponential form to simplify many types of problem.
Mote Using the exponental form of {cos 8 -+ 1sin 1)", we have

(cosd +1sind) = (e'¥)" = """ = cosnll + 15in nf)
which proves de Moivre’s theorem.

Example 10 Express 2+ 2iin re'” form.

SOLLITION

=

. s . T
The modulus of 2 + 2i1s 2+/2 and its argument is T Hence, we have

242 = 2/3e¥

I

Example 11 Express | —iv3 in re'” form.
SOLUTION

3 - . =
The modulus of 1 — iv/3 is 2 and its argument is — ;" Hence, we have

P —iv3 =2t

Example 12 Find the values of (-2 + %)t and show their positions on an
Argand diagram.

BOLUTION
We proceed as follows:

o First, express (—2 + 2i) in its (r, &) form.
s Then find one value of {2 & 21)7
e Finally, use symmetry to find the other roots.

Hence, we have

(=2 + 2i)} = {:ﬁ[m (%) +isin(37ﬂ)]}!
(ol () ()]}

Therefore, from de Moivre’s theorem, one value of (-2 + Zill‘r 1s

2! [..-m G) ’ iﬁin(;_t)]
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Exercise 15B

1 For each of the following, find the possible values of =, giving vour answers in
I a+ibform i) re” form
a) =-16 b) ' = -8 48 ¢) 2} =27i
d) =* = 16i e) 22 = =25 ns=-31

2 Find the six sixth roots of unity.

3 Solve each of these.
a) (42 =4 b) (z— 1) =8 e 2=(z+1F
d) (z+3i) =(2= - 1) o) (z— i) =81(z+2)"

' form

4 Find the seven seventh roots of unity in the e
§ Solve z* = 32i. Give your answers in the re'” form, and show them on an Argand diagram.

6 By considering the ninth roots of unity, show that
2x 4n bn 8n 1
cos| — ] +cos|— ) +cos| — | +cos| — | = - <
(3)+e(5) +eo(5) +e() - -3
7 By considering the seventh roots of unity, show that

() +e(3) +e(3) 3
7 1) 7 2

8 When cos 4il = cos 30, prove lhatﬂzﬂ.g;;. 47“ E’IE

Hence prove that cos (ETE) cos (4—:) Cos (ﬁT“) are the roots of 8x° + 4 —dxv -1 =0,

9 Ewvaluale each of these.

a) Je"“ cos Sx dx b) Ieh sin Tx dx
) J-:':'sin#fx dx d) Ie'“cus Ix dx

10 Find, in polar form, each of the fourth roots of —8 — 84/3i. (WIEC)

11 Verify that (3 -~*2i]3 = 5 — 12i, showing your working clearly. Find the two roots of the
equation (z —i)" =5 - 12i (OCR)

12 1) Find the exact modulus and argument of the complex number —4/3 — 4i.
i) Hence obtain the roots of the equation

2 +4V34+4i=0

giving your answers in the form re”, where r > 0 and —n < 0 < n. (OCR)
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EXERCISE 15B

13 Express (8v/2)(1 + i) in the form ricos ) +isin#), where r > 0 and —x < # < . Hence, or
otherwise, solve the equation =* = (8y/2)(1 + i), giving your answers in polar form. (OCR)

14 Wrile each of the complex numbers
=1=(vVi = (VI +i
in the form re"', where r > 0 and - < < n.
Hence show that if :"i - : = x + 1y, where x, v £ K, then

L_24+v3  (OCR)
X

15 a) State de Mowvre’s theorem for the expansion of (cos # + isin#)", where # is a posilive integer
or rational number,
b) Find the modulus and the argument of each of the three cube roots of 1 4 1.
¢) Show that (1 + 1" =2%(-1 +i).  (WIEC)

16 Write down the modulus and argument of the complex number —64.

Hence solve the equation =% + 64 = (), giving vour answers in the form r{cos 0 + isint), where
r>0and - < <n

Express each of these four roots in the form a + i and show, with the aid of a diagram, that
the points in the complex plane which represent them form the vertices of a square.
(AEB 94)

17 a) Solve the equation =* = 4 + 4i, giving vour answers in the form z = re™”, where r is the
modulus of z and & is a rational number such that 0 < k < 2.
b) Show on an Argand diagram the points representing your solutions, (EDEXCEL)
181) Show that
el 3 = 3 eng 2 + isin 2x)
where x is real.
i) Find the real and imaginary parts of
e (cos 2y + isin 2x)
{3+ 2i)

iy Il C = -|-=:'1" cos 2xdyand § = Jcl" sin 2x dox, by using parts i and #i and considering C + 15,
or otherwise, find C and §. [You may assume the normal rules of integration apply to

Ju“ dx when & is complex.] (NICCEA)

19 a) Verify that z, = 1 + ¢ is a root of the equation (z — 1y =-1
b) Find the other four roots of the equation.
¢) Mark on an Argand diagram the points corresponding to the five roots of the equation,
Show that these roots liec on a circle, and state the centre and the radius of the circle.
d} By considenng the Argand diagram, or otherwise, find
i) argznterms of .

i |z in the form acos E where a and b are integers to be determined. (MEAR)
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20 i) Find the roots of the equation (= - 4)" = 8i in the form a + ib, where @ and b are real
numbers. Indicate, on an Argand diagram, the points A, B and C representing these three
roots and find the area of AABC.

) The equation z* + pz° + 40z + ¢ = 0, where p and ¢ are real, has a root 3 +i. Write down
another root of the equation.

Hence, or otherwise, find the values of p and q. (EDEXCEL)

21 Write down the fifth roots of unity in the form cosfl + isin#, where 0 < 0 < 2n.

i) Hence, or otherwise, find the fifth roots of i in a similar form.
i) By writing the equation (z — 1) = =¥ in the form

5
(- - 1) _
show that its roots are

(1 +icotikr) k=1,2,3,4 (OCR)

22 1) Find the six complex roots of the equation z* + 81 = 0, expressing each in the form re.
Give the exact values of # in radians.
i) Show that (1 +i) and (=1 — i) are two of the roots.
iif) Sketch the six roots on an Argand diagram, clearly indicating the significant geometrical
features. (NICCEA)

Trigonometric identities
Expressions for cos"# and sin"@ in terms of multiples of @
Let z = cos 0 + isinf. We then have

]:E (cosf+isind)"' = cosf—isind

which gives

z4

| =
]|
2
=

2isinf

LE ]

I
=

]

We also have

2 = (cos B + isin0)' = cosnl) + isinnl
| l

d -'_-E - .
= cosnll + isinnf

= %Ecosnﬂ— i sin nf!
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TRIGONOMETRIC IDENTITIES

which gives
L
== 2cosnll
gl
R
F-—=2 sin nt?
L T

With the aid of these four identities for = i—% and =" = _—l" we can write any

power of cos ! or sin @ in terms of multiples of 0.

Example 15 If = = cos ) + isin 0, express the following in terms of fl.
a) - b) = °°
SOLUTION
We know that, when z = cosfl +isinfl,
2 = cosntl + 1sinnf
for all integer n.
Hence, we have
a) - =cosdl +isindl
b) 1 = cos(=30) + isin(-30)

= =¥ =cos30 —isin3p

Example 16 If = = cos# + 1sin 0, express the following in terms of =.

a) cos bl b) sin 30

SOLUTION

When z = cosf + isinfl, we know that

:"+lm53¢05uﬂ
and - lﬂ = isinnf
Hence, we have

|
N
a) 2cosoll = - +:¢
_1fs, 1
= cmﬁﬂ=5(. +.:)
. |
b) disin3fl == e

IR TR
— ﬁlngsz'z—i(_ —'E'a-)
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which gives

5 15 6 l
'b — "'b ""‘ - B —— — ——
cos 'l = ( + 6"+ 15: +2[|-:-:1 +__4+__h)

(- e+2) -

Converting the RHS, we have

gl- -

L
o~
I1J
+
b |._,
[ )
\"'-—-.-'-
.I,.
[ ]
—,

cos’) = E';[chsﬁﬂ +6 % 2cosdl) + 15 x 2cos 20 + 20)

1 3 15 5
%) = —cos bl + —cosdl) + —cos20 + —
= =R T MES 16

Example 19 Express sinfl as the sines of multiples of 6.
SOLUTION
We have

sin'fl =

19

where z = cosll 4+ isin{l.

Using the binomial theorem, we obtain

5in5ﬂ532|?(:5—5:3+Iﬂ:—]—?+_—f:—%)

Converting the RHS, we have

sin’d = ﬁ{:i sin 50 — 10i sin 30 + 20isin 0]
1

= sin'fl= Lsin 50 - —5~5in 30 4 %sin i1

Expansions of cos n# and sin n@ as powers of cos @ and sin 8

To change a function such as cos 60 into powers of cos {l, we express cos 601 as
the real part of cos 60 + 1sin 60,

By de Moivre's theorem, we have
cos 60 + i sin 6 = (cos 0 + isin 0)°

the RHS of which we expand by the binomial theorem. We then extract the
real terms from this expansion.

Similarly, we express, for example, sin 76 as the imaginary part of
cos 70 + isin 74,

lar
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Example 20 Express sin 3¢ in terms of sin 6.

SOLUTION
We put
sin 31 = Im{cos 30 + isin 34)
where Im (=) is the imaginary part of =.
Hence, we have
sin 30 = Im(cos fl + isin )’
Expanding the RHS by the binomial theorem, we obtain
sin 30 = Im[cos’@ + 3 cos*6(isin ) + 3 cos f(isin ) + (isin )]
= Im(cos’@ + 3icos’@sin 0 — 3cos #sin’0 — isin’d)
= 3cos*#sinf — sin’f)

Using cos f! = | — sin*# (as the answer has to be in terms of sin #/), we
have

sin 30 = 3(1 - sin*@) sin 0 - sin’f
= 3sinf — 3sin’f — sin'd
which gives

sin 30 = 3sin @ — 4sin’0

Example 21
a) Express cos 6l in terms of powers of cos 1.

b) Express % in terms of powers ol cos f.
11

SOLUTION
a) We put
cos 60 = Re(cos 660 + isin 6{)
where Re(z) means the real part of =.
Hence, we have
cos 60 = (cos ) + isin #)°

Expanding the RHS by the binomial theorem, we obtain
cos 60 = Re [cos®0 + 6cos’0(isin0) + ?—f cos'0(isin 0y +

6.5.

=

.. 6.5.4.3
]ﬂ . H L]
I cos {i1sin ) +¢.3_1.I

432
54.3.2.1

= cos bl = cos®d — 15cos*0sin*0 + 15 cos 0 sin*ll — sin®)

+ cos A (isin)* +

o w
o b

-

cos@(isin®) + (isin l'-‘ll"'jl
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TRIGONOMETRIC IDENTITIES

Using sin’@ = 1 — cos’f, we have
cos 60 = cos*fl — 15cos*d(1 — cos*0) + 15cos* (1 — cos*0)* — (1 — cos*0)’
= cos®® — 15¢cos* + 15¢cos®0 + 15¢cos’0 — 30cos*d + 15cosd —
— 1 4+ 3cos*0 — 3cos*t) + cos®0
which gives
cos 60 = 32cos*! — 48 cos*l + 18 cos™t) — 1
b) We put
sin 6f) = Im(cos 6 + i sin 60)
where Im(z) means the imaginary part of =.
Hence, we have
sin 66 = Im (cos 0 + i sin )"

Expanding the RHS by the binomial theorem, we obtain

sin 60 = Im |cos®® + 6.cos @ (i sin ) + g—% cos*@{isinf) +

F 9

+

6.54 5 .. 4 6543
191 cos isind)y + R
3.2 .

+ -:%_2_1- cosf(isin#)° + (i sin®)°

= sin6fl = 6cos'@sin 0 — 20cos*0sin’* + 6cos O sin’l

cos 0 (isin 0)* +

Therefore, we have

% = 6cos’0 — 20cos'B(1 — cos’0) + 6cos b1 — cos’)’
= 6cos’0 — 20cos’0 + 20cos’d + 6cos ) — 12cos’ 0 + Geos 0
which gives
Si.nﬁ'“ = 32cos’0 — 32cos'll + 6eos O
sin @
Example 22

a) Express sin 500 in terms of sinfl.

=
b) Hence, prove that sin(g) sin (%) sin(ﬁ?n) and sin(??n) are the

roots of the equation 16x* — 205° + 5= 0.

- - ¥ 2 L
¢) Deduce that sin” (%) and sin” (?n) are roots of the equation

16y — 20y + 5 = 0, and hence find the exact value of
¥
i) sin (E) sin (ﬂ) iy cos (I_rr)
5 5 5
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b)

We put
sin 3 = Im(cos 50 + 1sin 50)
where Im () is the imaginary part of =.
Hence, we have
sin 50 = Im(cos @ + isin @)’
= Im(cos*? + 5icos*fsin 0 + 10i’cos’ @ sin*0 + 10i’cos’ 0 sin'f +
+ Si‘cos 0'sin*f) + i'sin*f)
which gives
sin 50 = 5cos*0sin B — 10 cos’d sin*0 + sin’0
Using cos®f = 1 — sin’fl, we obtain
sin 50 = 5(1 — sin®0)’ sin@ — 10(1 — sin’f) sin*0 + sin’0
= sin50 = 16sin*d — 20sin’0 + Ssin 0

From part a, we have
$in30 _ |6sin0 — 20sin%0 + 5
sin f

When sin 50 = 0, 16sin* # — 20sin” 0 + 5 = 0, which gives
16x* — 207 +5=10
on substituting x = sin @,

The solutions of 16x* — 20x% + 5 = 0 are x = sin 0, where 0 satisfies
sin 56

= 0. All the x are different, and since sin 50 is divided by sin ),

we exclude the possible root sin # = 0. Hence, we have

sin5d=0 = # =0 (excluded), ET 2—; 3?:“

which give the following values for sin -

. . 2 . o . 2
sin (%), sin (?K) sin (3—;) which is the same as sin (Tx)
sin (4%) which is the same as sin (%) .

sint which is zero and henee excluded,

s:in(ﬂ) and ﬂn(T—“)
5 5

Therefore, the four different non-zero values of x for 16x* =202 +5=10
arc
5in (E) sin (E) sin (E) 1N (E)
5 5 5 ! 5

iso
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¢) We substitute y = x° to obtain the equation 16)* — 20y + 5 = 0, whose
roots are the two different values for y given by the substitution.

There are just two values of x7%, sin” (g) and sin’ (1—:) since

sin(-%ﬁ) = - sin(?) and sin (T?n:) = —sin (1?11) which give
sin” (ﬂ) = sin’ (E) and sin’ (?—“) = sin’ (2“)
s/ 5 5 5

Therefore, the two different roots of the equation 16y~ — 20y +5=10

are y = sin° (E) and v = sin’ (3_“)
2 u 5 o 5 3

i) Using the product of the roots of a polynomial (see page 147), we
have for 16y° = 20y + 5 =10,

- w()(3
- <()-(3)

Since both s1n( ) and sin

i (%) sm(zsn) =

i) Since 16y7 — 20y + 5 = 0 is a quadratic equation, its roots are

lI

bl
16
3
16

m“.;'" LnI;;i" uq|""'

|'f-r"|“--._.--"‘---_-n*"~--_--"''r,:;:I
|I

re positive, we obtain

20 = /400 - 320
B 32
L o 0EVBO_ 5245
32 8

Since these two roots are sin’ (%) and sin’ (355) and

sin(z—n) = sin (E) = 0, we have
3 5

sin:(%) = 5- V3

8

Using the identity cosfl = 1 — sin” (g) we obtain
2r af
cos =1—-2sin"|—=
(%) (s
=1=2
E

LR |
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Exercise 15C

1 If z =cosf +isinf, find the values of each of the following.

B 4, | . 3+ 2 2 1
-JH—E h}..'i'; t’-'."; ﬂ]-—;+j—::
2 Express each of the following in terms of =, where = = cos# + 1sin 6.
a) cos 60 b) sin 50 ¢) cos*d d) sin’'t
e) sin’50 N cos*3f
3 Express each of the following in terms of cos f).
a) cos 66 b) cos 48 o 340 Ll
sin sin
4 Express each of the following in terms of sin 0.
a) sin 30 b) sin 50 c) M ﬂ
cosfl cos (!
8§ Express cach of the following in terms of sines or cosines of multiple angles.
a) sin’( b) cos'l c) cos’l d) sin’l)

e) cos"f

6 Prove that cos'll = %{msdﬂ +4cos 20 + 3).

- 3
7 Prove that tan 30 = m—m”. Hence solve 1* — 3t =31+ 1 =10.
1 — 3tani®?

8 By considering (cosf + isin ), use de Moivre's theorem to establish the identity
cos 30 = dcos'0 — Icosh
Write down the coefficient of @ in the series expansion of cos 3.
Hence, using the identity above, obtain the coefficient of 0* in the series expansion of cos’f.
iAER 96)
9i) Show that 2+i)' = -7+ 24i.
i) Use de Moivre's theorem to show that
cos 40 = cos* — 6.cos*0sin®P + sin*f
and sin4f = 4sin fcos’? — 4sin’fHcosd
iii) If r = tan @, show that
41— 41?
1 — 612 4 1*
iv) By considering the argument of (2 + i), explain why 7 = Jl-i:-i- a root of the following equation

de—ar* 2
1 =602+ 14 7

tan 40 =

152
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15

16

17

Find each of the roots of the equation =* — | = 0 in the form r(cos @ + isin ), where r > 0 and
—n<f=mn

a) Given that z is the complex root of this equation with the smallest positive argument, show
that the roots of z° — 1 = 0 can be written as 1, a, #°, o°, o*.

b) Show that =* = a* and hence, or otherwise, obtain =* — 1 as a product of real linear and
quadratic factors, giving the coefficients in terms of integers and cosines.

c) Show also that

Pe=l=Z=It+2+2+z+1)

and hence, or otherwise, find cos( '_:irr]. giving your answer in terms of surds. (EDEXCEL)

a) Use mathematical induction to prove that when n is a positive integer
(cosfl + isinf)" = cosnl + 1sin nl

b} Hence show that
sin 50 = 16sin*0 — 20sin’0 + 5sinf!  (EDEXCEL)

In the polynomial equation
az"+a, 12 "+...+a3=0

all the coefTicients a,, @, . ....ay are real. Given that x + iy is a root of the equation, show
that the complex conjugate x — iy is also a root.

Show that e™* is one root of the equation * = i. Find the other two roots and mark on an
Argand diagram the points representing the three roots. Show that these three roots are also
roots of the equation

H+1=0

and write down the remaining three roots of this equation. Hence, or otherwise, express z* + |
as the product of three quadratic factors each with coeffhicients in integer or surd form.
(NEAB)
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Applving this to |z| = 1, we obtain Imi

|wi—=2] =1+ w]|

Now |wi — 2| = i| |w + 2i|, thus we have
|w+2i| =1+ w| (since |i] =1)

Therefore, the locus is the perpendicular bisector
of the line joining —2i to —1 (see page 13).

Example 25 Find the image of a circle, centre O, radius |, under the

. 1
transformation w = oo

SOLUTION
The general point on the original circle is z = ¢ or 2 = cosf + isinf.
Hence, we have

| 1
T T=e®  1—cosf—isin®

MNote Do not use

1 1-e

T l—e? (1 —ef)(] —e¥)

as 1 —e " is not the complex conjugate of | — ¢,

w

Multiplying both the numerator and the denominator by
| = cosfl 4+ 150, we obtain

1 | —costl +isint}

W= =
' 1—cosB—isin® {1 —cosO — isin0)(] — cosd + isin )

_ 1 —cosf +isind
(1 — cos )’ + sin 26

Using cos*0 + sin*0 = 1, we have
- | = cosil +1sind
2—=2cosll
1 isin @

:--+.-—
2 2-=2cosh

Using the half-angle identities for sin 0 and cos @, we obtain vy

w343 col (g)

which gives u = 1, since w = w + iv.

Therefore, the locus of w is the straight line, v = L.
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TRANSFORMATIONS IN A COMPLEX PLANE

Example 26 Find the image of |z) = 2 under the transformation w = 2z —

ry | e

SOLUTION
The general point on the onginal circle is = = 2¢", or = = 2cos 0 + 2isin 0.
Hence, we have
3
2(cos 0l 4+ 15in )

w =4dcosll + disind —

=dcosll +4isinf — %[cnsﬂ —isinfl)
which gives .

. 5 11. .
H+iv=—cosfl + —1sindll
2 2

= w==cosll and l'=lﬂ—|sinﬂ

e

[ YR

Eliminating cos # and sin 0}, we obtain

)+
— )4 —=]=1
5 11
4t 4
=+ =
25 1

Therefore, the image is an ellipse with the above equation.

Example 27 Find the image of |z — 7| = 7 under the transformation

W= g {z £ 0).

SOLUTION
The general point of |z — 7| =T 15 2 =7 + Tecos @ + Tisin ). Hence, we
have
28
T 7 Tcos0 + Tisind
_ 4
| +cosfl +isind

B 41 +cosll —isin
(1 +cosfl+isinf)(] +cosll —1isinf)

_ 41 +cosfl —isindl)
(1 + cos @y + sin 20

41 +cosll —isind) 4isinf

=2-

2+ 2cosill 24 2cosil

asT



EXERCISE 15D

Exercise 15D

1 For the transformation w = =*, find the locus of w when

a) = lies on a circle centre O, radius 5
b) = lies on the real axis
€} = lies on the imaginary axis.

2 For the transformation w® = z, find the locus of w when

a) - lies on a circle centre O, radius 5
b) = lies on a cirgle centre O, radius 2
¢) = lies on the imaginary axis.

3 For the transformation w = z°, show that the locus of w, when =z moves along a line y = &, is
a parabola. Find its equation.

. T+i
4 For the transformation w = - .
iz+2

find

a) the locus of w when = lies on the real axis
b) the locus of w when = lies on the imaginary axis
€) any invariant points.

5 For the transformation w = 3z + 2i — 5, find the locus of w for [z| = 4.

az+ b

4 o
z==3i,andw=1—-diwhenz=1+4i

b) Show that the points for which w = 2 lie on a circle. Find its centre and radius.

6 a) For the transformation w =

, where a, b, c € R, find a,b and ¢ given that w = 3i when

7 Find the image under the transformation w = _r =

s -

. where = is the circle || = 3.

8 Find the image of |z| = 3 under the transformation w = 3z +

[F] I,h.

|8

5
— (z £ ).

9 Find the image of |z — 5| = 5 under the transformation w =

by

10 The point P in the Argand diagram represents the complex number =.
a) Given that |z| = 1, sketch the locus of P.

The point Q is the image of P under the transformation
1

w= _]
b) Given that = =¢”, 0 < f < 2x, show that w = —{ — ficot 30

¢) Make a scparate sketch of the locus of Q. (EDEXCEL)
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CHAPTER 15 FURTHER COMPLEX NUMBERS

11i) Solve the equation =* + 8i = 0, giving vour answers in the form re', where r = 0 and
-m=lf<nm
i) The point P represents the complex number 2 in an Argand diagram. Given that |z - 3i| = 2,

a) sketch the locus of P in an Argand diagram.
Transformations T, T5 and T; from the z-plane to the w-plane are given by

T w=iz
T:: W= 3:
Ty w=2'
b) Describe precisely the locus of the image of P under each of these transformations.

(EDEXCEL)

12 A transformation T from the z-plane to the w-plane is given by

=+ 1
W=

z#1

L2 ]

Find the image in the w-plane of the circle |z| = 1, = # 1. under the transformation 7.
(EDEXCEL)

13 The transformation, T, from the z-plane to the w-plane 1s given by

1
s il
" z-2 7

where z=x+iyand w=u+ivn.

Show that under T the straight line with equation 2x + y = 5 is transformed to a circle in the
w-plane with centre (1, — 1) and radius { /5. (EDEXCEL)

14 The complex numbers = and w are defined by

(1+2¢ and w=—
1 +i

— &

LE]

where ¢ is real.

a) 1) Show that [z| =e* and arg:z = 2¢.
i) Inan Argand diagram, z is represented by the point P. Skeich the locus of P when ¢
varies from 0 to .

b) i) Show that the imaginary part of w 1s
%:"{sin 2 — cos 2¢h)

i) Determine the values of ¢ in the interval 0 < ¢ < = for which w is real. (NEAB)

15 Given that z = x + 1y and w = u + iv are complex numbers related by w = L 1, obtain

4

expressions for u and v in terms of x and y.

The complex numbers = and w are represented by the points P and Q respectively in the
Argand diagram. Given that P moves along the line y = 2x, show that Q moves along the line
u+v—2=0. (WIEC)
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16 Intrinsic coordinates

It i mo paradox to sayv that in our most thearetical moods we may be nearest to our practical
applications.
ALFRED MORTH WHITEHEAD

We have already seen that the position of a point on a curve (and hence the
curve's equation) may be given in terms of:

e cartesian coordinates (x, y), or
® polar coordinates (r, F) (see pages 43-56).

We can also define the position of a point on a curve by
means of intrinsic coordinates (s, ), where s is the length of
the arc from a fixed point to the given point, and  is the
angle which the tangent to the curve at that point makes
with the x-axis.

Thus, referring to the figure on the right, intrinsic
coordinates would give the position of point P in terms of
the arc length PT and the angle which PA makes with Ox.

A
We must stress, however, that the majority of the equations /
of curves cannot realistically be given in intrinsic form. Also,
only in rare cases is it sensible to try to convert the cartesian,
parametric or polar equation of a curve to its intrinsic form.

But two curves in particular are more readily treated in their intrinsic forms.
They are the catenary (see Example 2, on pages 365-6) and the eveloid (see
Example 3, on pages 366-7).

Trigonometric functions of
Considering the gradient of a tangent, we have
dy _ tan y
d__.._ = IP.

When we derived the length of the arc of a curve (see pages 250-3), we found

that
ds _ [ (drY
E_‘\’“ (d.t')

ds o
—_— | + tan-
=% T -1." an= i
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CHAPTER 16 INTRINSIC COORADINATES

Using the identity | + tan®y = sec® i, we obtain

== oSy = :—:
Using sin ¥ = tan y cosy, we have
s
= SNy :%

Radius of curvature

Let P and Q be points on the curve with C
intrinsic coordinates (s, ¢) and (x + ds, ¢ + dpy)
respectively. Hence, ds is the length of PQ.

If 8s is sufMficiently small, we may assume that
PQ is a segment of a circle.

If C is the centre of the circle passing through Qs + ds. g + Op)

P and Q. then the angle PCQ is .

Let p be the radius of curvature at P. Hence,

the length of PQ is pdy. That is,

. 05
os = pdfy = P o=

M i e
As ds — 0, this gives

. d.
Radius of curvature = p = —

diy

To find the radius of curvature in terms of x and y, we need 1o differentiate

dy . L
-d—': = tan ¢ with respect to x, which gives

X
dy  d
Ir-"_d,t"dllm
dy _d dy
R _duﬁ{unmd_r ( -:de
dy dy
da?
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CHAPTER 16 INTRINSIC COORDINATES

Substituting this expression in [1], we obtain

et
-] ,

yx —]IJ ik — Xy
X

Thus, the radius of curvature is given by

]
b Bl

o]

B (2 + ) ds
p 3 or p = R E——— or ﬂ —_——
d’y Fx — Xy dy

dx?

Example 1 Find the radius of curvature of the rectangular hyperbola

16 . . . . 4
¥ = —, given that its parametric coordinates are x = 41, y =
x 1

Method 1
We use the recommended method of staying in the parametric form
throughout. Hence, we have

imd =% E=l j=—= o p=t

Substituting for x, ¥, y and ¥ in
24 2
p= Q

X — Xy

where p is the radius of curvature, we obtain

\ 16\
I (Iﬁ+f_"‘)

,‘j:

32
%
= p=2 (I - ']T)
I
Method 2 dy
We could use the cartesian form, which readily gives |:I_ but from which
x
*
fl_:J is rather more difficult to obtain, as the following shows.
We have
dx 4 dy 4
=4 = —=4 = — = ==
dr Y= dr 1
which give
dy _dvdr 4 1 dy I
—m——— = — e X~ =% =
dx drdx 24 dx -
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CHAPTER 16 INTRINSIC COORDINATES

The curve v = cosh x (which we met on pages 189 and 190) is a catenary.

The catenary is the form assumed by a uniform, heavy and flexible cable
hanging freely between two points. An example is a slack mooring line between
a ship and a quay. In large suspension bridges, where heavy cables are used,
the curve assumed by the cables is sometimes close to a catenary.

The standard intrinsic equation of the catenary is s = atany, where a is the
y-intercept, corresponding to the standard cartesian equation y = acosh (l)

a
Another curve of practical interest (for example, as the flank profile of the
teeth of certain gear wheels) is the eyeloid. This is the locus of a point fixed on
the circumference of a circle which is rolling along a stationary, straight base-
line, as shown below.

¥

Period 2ma

2o

L

u - L L] L] L] T
xa I1a X1a 4ra S7a fTa

Note that the distance between successive cusps is 2na, where a 1s the radius of
the rolling circle. Hence, the calenary is periodic with perniod 2na.

The cartesian equation of the cycloid is difficult to derive, hence we normally
work with its parametric equations

x=alf—sinf) and y=all —cosr)

where 1 is the central angle of the circle, as shown in the figure.

Example 3 Find the intrinsic equation of the cycloid.

SOLUTION
We know that

= () (5o

Differentiating the parametric equations for the cycloid and substituting
them in the above, we obtain

5= J-‘/a:[l —cosi) + asin’ rdr
- ,:ﬂjmm

X aft
Using cost = | — 2sin’ (;) we have

5= aJ ‘/2 - z[l - Zsin:'(%)] di = a]lsin(g)dn‘

which gives

5= —4.-::05(%) +e 1]
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FINDING INTRINSIC EQUATIONS

Using
fany = dv  dy dr
dv  dr dx
we oblain
sin ¢
tany = ———
| —coss
.. . - f i P | ¥
Using sin¢ = 2sin 5 jeos| 5 and cosr= 1 — 2sin 5] we have

o e FEY {
s 'i' - 5In E COs E
1 - [l —inn:(i)] 25i_“:(i)
2 2
which gives

o | F—— t l =3 H 11 E__r)
LNy = Co )=k Y

T S S
- w_"r 1 4

- foo
Substituting for — in [1], we have

i=0- 4:11:05(:' - \b)

Therefore, the intninsic equatton of the cycloid 1s

§ = ¢ —dasin gy

The value of ¢ will be different for each arch of the cyeloid.

Exercise 16

In Questions 1 to 8, find the radius of curvature of each curve at the point specified.

1 v =x"+3at(l.2) 2 y=c' at(l.eh
. n
3 y=sinx, when v = I 4 y=xlnx, at (1,0}
- C
§ x=0,y=¢ whent =1 6 v=ct, y=-,whent=2.
f
- — n 4 [ R
7 x =cosr, v =sinf, when 7 = ry 8 y=acos't, y=asin’t, when 1 = —

g Find the radius of curvature, in terms of y, for

a) 5= +cosy b} &= 3y +dyfsiny ¢) 5= Weosy + i’

I6T



CHAPTER 16 INTRINSIC COORDINATES

10 Find the intrinsic equation of the curve y = Insec x, where s is the distance from the onigin.

11 A curve has intrinsic equation 5 = acosi.

a) Calculate the radius of curvature of the curve in terms of 1.
b) Show that the tangent to the curve at the point where s = 0 is parallel to the y-axis.
(EDEXCEL)

12 The curve C has equation y = 3cosh (-;—)

a) Show that the radius of curvature, at the point on € where x = 1, is 3cosh® (%)

b) Find the radius of curvature at the point where ¢t = 1.5, giving your answer to three
significant figures.
¢) Find the area of the surface generated when the arc of C between x = -3 and x = 3 is
rotated through 2n radians about the x-axis, giving your answer in terms of ¢ and .
(EDEXCEL)

13 A curve has parametric equations x = dr — {17, y = 21* — 8.
) Show that the radius of curvature at a general point (47 — ¢, 2¢* — 8) on the curve is
Lia+ '
i) Find the centre of curvature corresponding to the point on the curve given by 1 = 3.
The arc of the curve given by 0 < ¢ < 24/3 is denoted by C.

iif) Find the length of the arc C.
iv) Find the area of the curved surface generated when the arc C is rotated about the y-axis.
(MEL

14 A curve is given parametrically by x = e”(2sin 20 + cos 20), v = €"(sin 20 — 2cos 20). P is the
point corresponding to 0 = 0, and Q is the point corresponding to 6 = a (where z > 0).
i) Show that the gradient of the curve at Q is tan 2z, and find the length of the arc of the curve

between P and Q.
ii) Using intrinsic coordinates (s, ), where s is the arc length of the curve measured from P

and tany = % show that 5 = 5{.';‘}" -1.

i) Find the radius of curvature at the point Q.
iv) Show that the centre of curvature corresponding to the point Q is

($e*(2cos2x — sin 2a), $e’(2sin 2z + cos 22)) (ME1)}
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17 Groups

Before the word ‘proup” appeared in the moathematical (fterature, there bad been o longer
pericad of development in which mathematicians applied group-rivoretical results witkonut
the contcept of a group being explicitly defined.

WALTER PURKERT AND HANS WUSSING

Binary and unary operations

A binary operation, usually denoted by =, is a rule which takes an ordered pair
of elements, a and b, and gives a uniquely defined third element, ¢, so that

a# b = ¢, (Other symbols used to represent a binary operation include ©, &
and )

For example, multiplication is a binary operation. IT we represent = by
multiplication, then

dei=dx3I =12

Addition is also a binary operation. If we represent = by addition, then
Geli=0+3=09

Likewise for division, where we have

6

6‘3:—:2
i

But note that in the case of division, the operation is not commutative. Hence,
we have

]l.ntnl"..:'—:II =
]

B | =

That is,
63+ 3sh
In general. we have
auh £ heg

Thus, for some binary operations, the order in which we enter the elements
does matier.

Unary operations

A unary operation is one which uses only one element. For example, o — a is
d UNAry operation.
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CHAPTER 17 GROUPS

Modular arithmetic

We can perform arithmetical operations in different moduli. To indicate the use
of a particular modulo, say n, we add (mod n) after we have completed the
calculation.

Take, for example, the multiplication of 1two integers in modulo 6. We multiply
the two integers normally and then subtract 6 repeatedly until the answer is
between 0 and 5.

Hence, we have for 3 x 3 =9

Ix3=3(mod 6) since9-6=13
Similarly, for 5 x 4 = 20, we have

5x4=2(mod 6) smceD-6-6—-6=2
And for 4 » 3 = 12, we have

4x3=0(mod6) sincel2-6-6=0

Modular addition is similar to multiplication. Suppose we want to add two
integers in modulo 4. We add them normally and then subtract 4 repeatedly
until the answer is between 0 and 3.

For example, we have
2+3=5=1(mod4) 2+0
1 +3=4=0(mod 4) 3I+3=2

Example 1 Express 9 x || in modulo 17.

SOLUTION
We have 9 = 11 =99, which becomes

9% 11 =14(mod 17) since 99 -17-17-17-17-17=14

Definition of a group

A group compnses

e a set of elements (or members), G, together with
e a binary operation * on this set.

To be a group, G must satisfy the following four properties (sometimes referred
lo as axioms).

o Closure G must be closed. This means that if @ and b are members of G.
then a+ b must also be a member of G. This is writlen as

aehe G forallaand b G

e Associativity Provided their original order is preserved, the result of
combining a, b and ¢ does not depend on which two adjacent elements are
combined first. This is written as

(asb)sc=as(bec) foralla, band c € G

aTo



DEFINITION OF A GROUP

o ldentity There is an element ¢ in & for which as¢ = ¢+ g = a for every a in
(r. That is, there is an identity element ¢ in @ which does not change any
other element.

e Inverses For any clement a in &, there is an inverse element of @ in G,
denoted by a ', This is written as

For any a € G, there exists a™' € G, for which asa™' =a 'sg = ¢

To confirm that a set of clements, together with an operation on the set, forms
a group, we have to venfy that the sel possesses every one of these four
properties. This can be difficult, since we need to check each property for every
element or pairs of elements of the sel.

Note When vou are given a question imvolving a group, you will also always
be given a binary operation (which i1s usually multiplication or addition). It is
essential that you recognise which binary operation is being used.

Example 2 Prove that the set G = {1, —1. =1} under multiplication is a
group (where i = —1).

SOLUTION

To prove that thas is a group. we need to venfy cach of the four properties
in turn. It is essential to confirm that all the properties are satisfied.

Closure We have to verify that, foranvaand A€ G, as b = .

Therefore, if we take any element in & and multiply it by any other
¢lement in G, the result should be an element in G. One way to check this
i5 to take every pair in turn, {This method is only feasible in this case
because (¢ 1s a small group.) Hence, we have

Lol =1 [si=i Io—l=—1 leo—i=—i
il =i iwi=—1 e =i Qe-i=|

Asl=—1 —lsi=-i —ls-l=1 —ls—i=i
il =—i  —isi=1 Ciw—l=i —is—i=-—]

Thatis, a=h & G.
Associativity We have w verily that (wshjs ¢ = as(h=¢) for all o, & and
cin (7,
We have, for example,
fie—=1)s—i=—je—i=—] and is(—le—1)=12i=—|

This verifies associativity for just this one triple combination. To prove
associativity by this method, we would have 1o check every other triple
combination, of which there are 64.

Alternatively, we can simply recall and state the fact that multiplication of
complex numbers is associative

Identity 1 is the identity element of this group. This is because multiplying
any number by 1 does not change its value. To confirm that 1 is the identity
clement, we have to verify that lvg =g+ | = aforeveryain .

ar



CHAPTER 17 GROUPS

Identity The column under the identity element and the row across {rom the
identity element contain the elements in the same order as the original set.

The row and the column given below show that 0 is the identity element:

+(mod 4) 0 1 2 3
0 0 | 2 3
| |
2 2
3 3

Note The identity element does not have to be 0 or 1. For example, see the
group table on page 375 for the set of integers {2,4,6,8, 10, 12} under
multiplication {(mod 14).

Inverses We can find the position of the identity element in each column and
each row, For example, 1 «3 = 3= | =0, which is the identity. Therefore, 3 is
the inverse of 1.

In fact, the set G = {0, 1.2, ....m — 1} under the binary operation, addition
{mod m), also forms a group. {You can check this for voursell for various
values of m.) Notice that, in general, the inverse of k under addition (mod m) is
m-—k.

Example 4 Find whether the set {1,3} under multiplication (mod 11)
forms a group.
SOLUTION

We can find the answer by checking each of the group properties in turn,
until we find one which does not work. We recall that for G 1o be a group.
we need to check that all four group properties are satisfied. So, to check
that & is not a group, we need only to find ene property which 1s not
satisfied.

In this case, since
3#3=3%x3=9(mod 11)
and 9 is pot a member of the original set, closure does not hold.

Since the set {1, 3} is not closed under multiplication (mod 11), it does not
form a group.

(A S R RO R ERERRRRRRRRRRREREROEREDR]

Note If in Example 4 we were to consider the other group properties, we
would find:

e The group is associative, since multiplication is associative.
o There is an identity element, 1, since 1 is the identity under multiplication.

® There is, however, no element @ for which 3+a = 1 (mod 11), and so the
property of possessing an inverse element is not satisfied either.
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CHAPTER 17 GROUPS

Exercise 17A

—

In Questions 1 to 4, prove that each set under the given operation satisfies all the group properties
and hence forms a group.

1 The set {1.5} under (x. mod 12). 2 The set {1,2,3,4} under (x, mod 5).
3 The set {0.1,2,3,4,5} under (+, mod 6). 4 The set {1,2,3.4,5,6} under (x, mod 7).
§ Show that the set {1, 3} under (x, mod 12) does not form a group.

6 Show that the set of positive integers under addition i1s not a group.

Symmetries of a regular n-sided polygon

The set of symmetries of a regular polygon forms a group under the
composition of symmetries. Hence, this is true of the set of symmetries of, for
example, a square, a regular hexagon and a regular heptagon.

»  Example 6 Prove that the set of symmetries of a regular pentagon under

E composition forms a group.

% SOLUTION p

L]

= It is easier to specify this group geometrically than to write down

. all the elements. The symmetries of a pentagon, PQRST, shown

=  on the right, are the five reflections (top row) and the five rotations

= (bottom row) drawn below.

-

L]

L]

. 5 R
L]

L]

. Reflections

. p T s )

]

: Q T P 5 T L] 5 Q K P
.

u

: RS 0 R FooQ T P s 1
.

[ ]

*  Rotations

[ ]

- 4 T 5 R 0

L}

s T Q 5 P R T 0 5 P R
.

L

. 5 R R0 Q P PooOT T 5
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Closure If we add together any two integers, we always get an integer.
Therefore, il g and & are integers, we know that

geh=g+b=r¢

and hence ¢ is an integer. Therefore, the set of integers under addinion is
closed.

Associativity We may simply quote the fact that addition is always
associative.

Tdentity As alwavs with addivion, 0 15 the identity element. For any given
inlcgc;. a, we have
gall=0sg=g+0=0+a=ug
This proves that 015 the identity element for the group.
Inverses Giiven any integer a, its inverse 15 —a. This is because
s —g=ag+—ag=0 and —-asa=-g+a=10

Therefore, we have checked that the four properties are satisfied, and so0
the set of integers under addition forms a group.

Example 8 Prove that the set of integers under multiplication as the
binary operation does not form a group.

BOLUTION

We recall that to prove that a set under an operation does not form a
group, we just need to check that one of the properties is not satisfied.

In this case, the inverse property does not hold.

The identity element under multiplication would be 1, but the inverse of 2
would be L, since

I—‘tﬂ'_

k::]

Vai|=—

But L is not a member of the set of integers, and therelore 2 does not have
an verse in the set.

Since one of the clements does not satisfy one of the propertics, the set of
integers under multiplication cannot be a group.

Example 9 Prove that the set of real numbers (excluding zero) under the
binary operation of multiplication forms a group.

SOLUTION
Again, we need to check that all four properties are satisfied.

Closure  The product of any two real numbers which are not zero 1s also
u real number which is not zero. Therefore, the set s closed.

Associativity  Muliiplication is alwavs associative.

Identity 1 is the identity of multiplication, and it is in this group. Hence,
there is an identity element.

avre
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PERMUTATION GROUPS

Therefore, the inverse of any 3 = 3 matrix with integer elements and
determinant 1 is also a 3 x 3 matrix with integer clements.

Finally, if A has determinant 1, then A" also has determinant 1.

Therelore, all the group properties are satisfied. and so G forms a group.

a" notation

It is usual 10 write & for @« a. Similarly, a = a#a is written as o',
If i is positive, then " means asa= ... »a. (Here, there are n copies of a.)
" is taken as the identity element. ¢

a"meansa '#q '+ ... +a ' (Here. again, there are n copies of ™'}

Division in a group
In a group G, we cannot divide by a. Instead, we multiply by its inverse. o ',
which has the same effect as dividing by «.

When multiplving by @', we must ensure that we multply both sides with o'
in the same position. For example, if b = ¢, we have

g leb=gu sy and beg '=pea’!

We cannot havea 'sh=csa ',

Permutation groups

Suppose that we are given n objects in a particular order. By switching two

objects, we can change that order. Switching the objects in positions | and 2 1s
. 12 - L.

represented by the notation (1 2) or ( T ) Similarly, the notation for

_—_ : : - . e 5 8 -

switching the objects in positions 5 and % is (38) or (3 P ) If we want 1o

move the object in position | to position 8, the object in position 8 to

position 5, and the object in position 5 back to position 1. the notation for this

:.'
is[lﬂﬁ}m(] & -

05 1 ) This means “l w8, 8 to 5, and 5w 1.

_ . 1 2 i 4 5
Similarly, the notation (L 21 {34 5) or > ) means 1 10 2 and
- 2 1/k4 5 3
2ol then3to4. 4105, and 5w ¥,
This “language” of permutations is illustrated below.,

(12)(34)(56)

A B CDEF | Idh-m
B ADCF g | Iepresenead (lz.usf.)

2143165
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The set which contains all possible permutations of n objects forms a group.
The binary operation is the composition of the permutations. We can verifv all
four group properties.

Closure Composing two permutations of n objects gives another permutation
of the »n objects.

Associativity The composition of permutations is associative, but we will not
prove it.

{One way to prove this is to encode the permutations as an n x n matrix
containing 1s and 0s, and then the composition will correspond to the
multiplication of matrices, which we know is associative. However, this
technique is beyond the scope of this book.)

We can simply state without proof that the composition of permutations is
associative.

Identity The identity permutation which does not interchange any objects is a
member of the set.

Inverses The inverse of a typical permutation (abc. .. d) is the permutation
{d...cba), which is also a member of the set.

Since there are n! ways of arranging n objects, it follows that there are n!
different permutations in the permutation group of n elements, which is
denoted by §,.

Generator of a group

If @ is a member of a group and a # e, @ is also a member of the group.
If a* # e, @ #a or a’ will also be a member of the group.

If @ 1s a generator of a group, then every member of the group may be
expressed as &* for some integer k.

If the group is finite, then a” = ¢ for some integer r, and the members of the
group are

a, o, a

veies@ ! and a' =e¢

For example, in the group ({e,a.a’.@’,a*},*) with @° = e, each of a, &*, &’ and
a' is a generator. (See pages 391-2.)
Cyclic groups

Cyclic groups are the simplest type of group. In any cyclic group, there is some
clement a which generates the group. Hence, the elements of the group are

{e.a,asa,asasa,ara=as*a, ...} or {ead, da", ...}

a2
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Examples of cyclic and non-cyclic groups

e The group [1. 0. -1, —i} is eychic.
Since, i* = —1 and i’ = -1, the group can be written as {1,1, 1,1 }.

e The group of integers under addition (mod 4) 15 also a cvelic group. The
elements of this group are [0, 1,2, 3}. The group can be wrilten as {e, 1. 19, 1'}.

We have already seen that 1° = 1+ 1 = 1 + 1 {(mod 4) = 2 (mod 4).

MNotice that these two eyche groups are very similar, both having four elements.
On page 388, we will find that they are isomorphic, since they have identical
structures,

o The integers under addition (mod ») always forms a cyvclic group, which can
always be generated by one element.

o The symmetries of a4 pentagon are not cyclic. IF we repeat a rotation again
and again, we will pever get a reflection. I we repeat a reflection again and
agmn. we only ever get that reflection and its idenuty. Therefore, there is no
way in which we can repeat the same symmetry over and over again and get
all the symmetries. So. the group of symmetries of a pentagon cannot be
cvelic.

Abelian groups

An abelian group is a group in which o b = bs g lor every pair of elements
@ and b, In other words, 1l does not matier which way round we combine the
clements. An abelian group s someumes called a commutative group. since
everv pair of clements commutes.

We note that a group is abelian when the group table has symmetry in the
leading diagonal.

{This class of groups is named after the prodigiously gifted Norwegan
mathematician Niels Henrik Abel (1802-29).)

Determining which groups are abelian

Consider the binary operation. Addition 15 always commutative, and the
multiphication of numbers 15 also alwavs commutative, However, the
multiplication of matrices is pot commutative, since, in general, AB + BA,
where A and B are mainces.

Thus, lor example, the group of {0, 1.2, 3} under addition (mod 4) is abehan,
since a + b = b + a for any integers a and b.

To show that the group of 2 = 2 matrices with integer elements and
determinant | is not an abelian group, we need to find one pair of matrices
A and B with AB # BA.
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This single example proves that the group of 2 x 2 matrices with integer
elements and determinants is not an abelian group.

The set of transformations of a pentagon is not abelian, since there is a
difference between performing a reflection followed by a rotation, and
performing a rotation followed by a reflection.

P P
! q Before transformation. ! u Before transformation.
5 R 5 R
P o R
Reflection in the
Q T perpendicular bisector 0 s Rotation anticlockwise
of RS, which passes through 144°,
through P.
R 5 P T
5 R
: . . Reflection in the perpendicular
T R ﬁlutalgnlﬂtlclmkmsc 3 2 bisector of PT. which passes
ot : through R.
P Q T P
All cyclic groups are abelian
Proof

We need to prove that a= b = bwsa, where a and b are any two elements in a
cyclic group G. Since G i1s cyclic, there is some element ¢ which generates G.
Since ¢ generates G, there are integers n and m for which ¢" = g and ¢™ = b.
Hence, we have

"+ m

ash=c"ec"=¢ =¢"ec"=bhea
=% atb=b.ﬂ

Hence, all cyclic groups are abelian.

Benefit of abelian groups

It is much easier to calculate in abelian groups than in non-abelian groups.
When calculating in non-abelian groups, we always have to ensure that the
elements are in their correct positions. Given below is an example of
calculating in a non-abelian group.
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Caleulating in a non-abelian group

When a group is not abelian, it is important that we do not switch the order of
any pair of elements. For example, consider the group of symmetries of a
sqquare, This is the dihedral group D,

Let a denote rotation by 907 anticlockwise, Then the rotations of the square
are a, «, @ and ela* = ¢), as shown below.

A D [ ) L L 1] 1] A

F i &= a’
MNow let b be the reflection shown below.

1| B

3] C
The other reflections are given by @+ b, & = b, and a' = b, as shown below.

0 A C D B C

e el @b

We note that b+ a = a' = b, which leads to a way of writing down the group.

The group of symmetnes of a square is the group whose elements are

- - - " 2
{e.a.a, @', aebh,a = b a » b}, with the stipulations that &' = ¢, b = ¢,
heog=yawh

These refations are enough to find the composition of any two elements. But
again, we must be careful - the group is not abelian, Hence, we cannot swiich
the order of two clements.

For example, consider (a+b)={a' «b). Using bea = a*+ b, we obtain
(@sbys(a sh)y=(aeh)s(hsa)=as(beb)sa
Using & = ¢, we oblain
as(bsbyra=aresa=ara=a’
Hence, we have
(asb)e(a s b) = o
Similarly, we have
(aeh)sd =as(bra)ra=as(a=blra=(asa’}=(b=a)=

Wealhsag)=eslhsa)=lexh)sa=hsa=a =h
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Because the group is not abelian, we also need to be careful when writing
down inverse elements. The inverse of a=bis b~' +a~', since

(aeb)e(b'va)=as(heb )2ra ' =aeeva' =ara' =¢

Order of a group

The order of a group is the number of elements in the group. Most of the cases
we have dealt with so far involve finite groups, which are those contaiming only
a finite number of elements.

To find the order of a group, we see how many elements are in the group. Here
are four examples:

e The order of the group of integers under addition {(mod 4) is 4. since the
clements are {0, 1,2, 3}.

e The order of the group {1,i, =1, =i} is 4, since again there are four elements.

# The order of the group of symmetries of a pentagon 1s 10 (see page 376).
since there are five rotations and five reflections.

® The order of the permutation group S, is n!, since there are n! possible
arrangements of n objects (see page 182).

Order of an element

In any finite group, any element combined repeatedly with itself must
eventually give the identity element. For example. in the group of addition
(mod 4), we have

1+1+14+1=0 and 2+2=0

In the group of symmetries of a pentagon, a rotation through 72° repeated
four more times, returns the pentagon to its original position. So. five rotations
through 72° are equivalent to the identity symmetry.

The order, or period, of an element is the smallest number of times we have 1o
repeal the element before we obtain the identity element. So, in the group G.
the order of an element. a, is n, where n is the smallest integer for which

a" = ¢. For example, we have:

e In the group of addition (mod 4), the order of element 1 is 4, since
14+14141=0(mod 4).

e The order of element 3, under addition (mod 4), is 4, since 3 + 3+ 34+ 3 =
0 (mod 4).

e The order of element 2 is 2, since we need only combine 2 twice before
returning to the identity: 2 + 2 = 0 (mod 4). The order of 0, which is also
the order of every identity element in every group, is 1.
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Isomorphic groups

We have already found that the group G = {0. 1. 2, 3} under addition (mod 4)
and the group H = {1.i, =1, —i} under multiplication are similar because they
are both eyclic of order 4. By drawing their group tables, we can sce thatl they
have identical structures.

+(mod 4)| 0 I 2 3 x 1 i -1 -1
0 0 1 2 3 1 I i -1 —i
1 | 2 3 0 1 1 -1 -1 |
2 2 3 0 l =1 -1 - 1 1
3 3 0 1 2 =i -1 ! 1 ol

Two groups which have the same structure are said to be isomorphic.

To prove that G and H are isomorphic, we need to identify the way in which
we can map elements of G onto elements of H.

In the case above, we can map an integer n € G onto the complex number
e*'"? ¢ H. To confirm that a mapping  from G to H is an isomorphism, we
must verify each of the following:

1 Each and every element of G is maps onto a unique clement of H.

2 Each and every element of H is the image of exactly one element of G.

3 The image of the identity of G, f{e), is the identity of H.

4 The composition element f{a) = f(b) in H is the same element as the image
f{a = b) of the composition element (a+h) in G.

Example 12 Show that the mapping fin) = ™" from G = {0.1.2,3} to
H={1,i,=1, =i} is an isomorphism.

SOLUTION

We need to check that f satisfies all four conditions for isomorphism.

1 [ identifies the image of each member of G.

2 Each and every member of H is the image of f(n) for some n. This is
because
] = oi=if2

3 The image of the identity of G, 0, is f{0), which is 1. This is the identity
of H, which confirms that the identity element in ( is mapped onto the
identity element in .

imiy2

— 1= eIm_-': S

i = e*if

4 We must check that for all integers n and m between 0 and 3
flnsm) = f(n) = f{m)

Since the binary operations in @ is different from that in /. the
equation we have to check becomes

fin + m) = fin) x fim)
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Since H is a subgroup of &, we can use Lagrange's theorem, which states that
the order of H divides the order of .

But the order of H is n. Hence, the order of a divides the order of G.

Example 13 A group, G, has subgroups {a}. {a.b.c.d. [}, and {a. d}.
a) What s the identity of G?

b) Could G contain only the five clements {a.b.c.d.f}? Explain vour
answer.

¢) What is the smallest possible order of G?

SOLUTION

a) The identity of GG must be a. This is because every subgroup of GG must
contain the identity of G, and {a} is a subgroup of G,

b) The order of a subgroup divides the order of a group. So, the order ol
must be divisible by 1. by 5 and by 2, Therefore, the order of G cannot
be 5, and so G cannot contain only the five elements a, b, ¢, d and f.

¢) The smallest order that & could have is the smallest number divisible
by 1, 2 and 5. This number is 10.

Groups of order 3

If G is a group of order 3, then the order of every element of G must divide 3.
That is, the order of every clement of G must be either 1 or 3.

There is only one element of order 1, the identity element e.

Since there are three elements in G, there must be two elements which are not
of order | and hence must each be of order 3.

Let a be an element of order 3. Then a, & and @' = ¢ are three different
elements in the group. Since there are only three elements in the group. it
follows that a, * and ¢ are all the elements in the group, and so G has to be a
cyelic group of order 3.

Hence, all groups of order 3 are cyclic. They are also all isomorphic with each

other.

Groups of order 4

If G is a group of order 4, then all the elements must have order 1, 2 or 4, One
of the elements must have order 1; this is the identity element e. If & has an
element a of order 4, then ¢, a, a* and @' are the four elements of G, and
therefore &+ must be the cyclic group generated by a.

Thus, if G is not the cyclic group generated by a, no clement of G has order 4.
If & has no elements of order 4, then every element apart from ¢ musi have
order 2. Therefore, the group is {e,a,b,c} and &® = b = =e.

a0
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We note that every element excluding the identity element is a generator.

Therefore, any group of order 5 is cyclic, and all groups of order 5 are
isomorphic.

Groups of order 6

There are only two groups of order 6:

® Type l: the cyvclic group.
e Type 2: the group of symmetries of an equilateral triangle.

If we are given a group of order 6, there are several ways to tell whether it is
cyclic,

Distinguishing between types 1 and 2

If G is abelian, then it must be cyclic. The group of symmetries of an
equilateral triangle is not abelian.

If & has an element of order 6, then it must be a member of the cyclic group of
order 6. There is no symmetry that completely generates the group of
symmetries of an equilateral triangle.

If G has three elements of order 2, then it is isomorphic to the group of
symmeiries of an equilateral triangle. These three elements of order 2
correspond to the three reflections of an equilateral triangle. In the cyclic
group of order 6, there is only one element of order 2.

Example 14 The symmetries of a square form the dihedral group, Ds.
Find

a) any subgroups of Dy of order 3
b) all the subgroups of Dy of order 4,
SOLUTION

a) Since Dy has order 8, there can be no subgroups of order 3, since 3
does not divide 8.

b) Let H be a subgroup of order 4.

If there is a rotation of 90° in H, then H must be the set of all
rotations of a square. This is because a rotation of 90° generates all
four rotations of a square, and because f has only four elements.

If a reflection in a diagonal is in H, then the only other reflection in H
is the reflection in the other diagonal.

If we were to include any other reflection, then M must contain all the
reflections. Thus, H must contain all four reflections and the identity
clement, which is impossible, since #/ has order 4.



EXERCISE 178

8 The group G consists of the set of six matrices I, A, B, C, D, E defined below, under the
operation of matrix multiplication.

I 0 o0 0 0 1 o1 0
I=(l} 1 l]) Au(l 0 L‘I) H:(U' 0 I)

o601 o1 0 Il 0 0

I 00 0o o1 010
C:(I'I 0 'E) D:(H I {1) E:(I 0 ﬂ)

1o I a0 0 01

I Copy and complete the following group table for G.

1 A B C D E
| 1 A B C D E
A A B 1 E C
B B 1 A D E
C | C D E
D D E C
E

i) Show that & is not cyvelic.

ity Find all the proper subgroups of (.

tv) The group H consists of the six elements 1, 2, 3. 4, 5, 6 under multiplication modulo 7. The
multiplicative group K consists of the six elements i, a, &, b, ab, a*b, where i is the identity,
a = b* = iand ba = ¢°b. Determine whether

a) H is isomorphic to G
b) K is isomorphic 1o G
¢) H 15 isomorphic to K.

Give reasons for vour conclusions. {OCR)
9 The multiplicative group G has eight elements e, a. b, ¢, ab. ac, be, abe, where e 15 the wentity.
The group is commutative, and the order of each of the elements a, b, is 2,

iy State the orders of the elements ab and abe.
i) Find four subgroups of  of order 4.
ily Give a reason why no group of order ¥ can have a subgroup of order 3.

The group H has elements 0,1, 2, ....7 with group operation addition modulo 3.

iv} Find the order of cach element of H.
v] Determine whether 7 and A are isomorphic and justify your conclusion. (OCR)
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10 The multiplication tables for G, a cyclic group of order 6, and H, a non-cyclic group of order 6,
are shown below.

G H
e g ¢ g ¢ g il hy hy hy b
e|le ¢ g ¢ ¢ i i i M s ol gy B :
glg & £ ¢ £ e |l b 0 hs b hy :
g|g £ ¢ £ ¢ g hs | hy @ by he hs s i
el & &£ e 2 & Wy (B ke ks @ R by |
glg £ e g £ ¢ hy | by hs hy By @y I
glg ¢ ¢ ¢ ¢ ¢ hs | hs by he b he i |

i) Give the order of each element of G.

i) Give the order of each element of i and write down all the proper subgroups of H.

i) The group M has elements 1,3,4,9, 10, 12 with operation multiplication modulo 13. State to
which of ¢ and H the group M is isomorphic. For the two groups which are 1somorphic,
write down a correspondence between the elements. (OCR)

11 The group G = {e, p1. /3. P3. 41+ §3.§3. 43} has order 8 and its multiplication table is shown
below.
L Y R
cle | Pt 42 3 i
LU R < B & DL FO I VI
Pr| P2 Py € P 4@ §i g4 i
Py | Py € P Pr 4y s g2 i
@il 3 g 44 € P P M
d: |42 G G 493 P2 € MM
Bl § qa 1 € M’
g |94 G @ @2 M P P2 ¢

i) Find the orders of p, and p..

il) Find two subgroups of order 4.

il) State whether G has any subgroups of order 6 and justify your answer.

iv) The group M has elements e, where k = 0,1, ....7. and the group operation is complex
multiplication. Show that H is cyclic.

v) Theset K = {i,a.a’,a',b,ab,a*h.a'h} is a commutative multiplicative group of order 8. The
identity element is i and a* = b* = i. Determine whether any two of G, H. K are isomorphic
to each other and justify your conclusions. {OCR)
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16

17

18

iii) Find the order of each element of G.

iv) Show that {I,A?, B, A°B} is a subgroup of G.

v) Find the other two subgroups of G which have order 4.

vi) For each of the three subgroups of order 4, state whether or not it 1s a cyclic subgroup.
iMED

Four of the subgroups of a group, X, are {A}. {A. B, C, D}, {A.C} and {A, E}.

a) Explain why X must contain more than the five elements given above. State the minimum
number of extra elements which X must have.
b) The subgroup {A, B, C, D} is cyclic. State possible geometrical transformations which could
correspond to the elements 4, B, C and D and construct a table for this subgroup.
(NEAB/SMP 16-19)

The matrix M(2) is defined by

(i)

a) Show that the set G = {M(x) : 2 € C, 2 # 0} forms a group under the operation of matrix
multiplication, which may be assumed to be associative.

b) Find the order of Mlll-i] and hence find a subgroup of G of order 4 and a subgroup of & of
order 2.

c) Show that the set H = {M(z): x = 3*, k € Z} is a subgroup of G.

d) Explain why the set § = {M(2) : 2 = -}-k, ke k#0}is not a subgroup ol &,

[ |
H B H
H B H

(EDEXCEL)

cosfl  sinf

a) Show that if M = (sinﬂ — cos@

) then M? = I, where [ is the 2 x 2 identity matrix.
By choosing two different values of @, exhibit two matrices A, B such that 4° = fand B° =/
but (ABY # I.

b) Prove that if C and D are n » n matrices such that ¢* = 1. D" = [ and C and D) commute,
then (CDY = 1.

c) Let G be an abelian group, and define H by

H={geG:g =¢}

where e is the identity element of G. Show that H is a subgroup of G.
d) The following is the multiplication table of the group Dy,

e a b ¢

p g r 3

e|le a b ¢ p g r s
a ¢ e q r 5 p

b ¢ e a r 5 p g
c|lec e a b s p q r
plp s r g e ¢ b a
qg\|lg p 5 r e b
rir g p s b €«
s | s r g p ¢ b a e
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) Dretermine whether or not £ 15 abelian,
) Determine whether or not {g € D@ g = ¢} is a subgroup of Dy, (SQAICSYS)

19 The six permutations ol the set {1, 2,3} are

=(112) e
we(112) nel

) IO denotes the composition of permutations, show that ms O my = m,.
iy Show that m: O (mg O ma) = {my O Te) O Ao

[ S
FYRLYY
S

|

-]

]
bt =
et
—
o S—
o

=

1
—
[ —
—_—
[

—
ik tad
S

=3

+

1

L =
- T d
"“--_.-"‘"

=i

s

Il
o
(P
L

iii) Draw up a table for the group formed by © operating on the set of these six permutations,
iv) State a group which 15 isomorphic to this group of six permutations, INICCEA)

20 Consider the binary operation & as defined by

aZbh=a+b+ab
i) Show that
a@bwcy=a+b+c+ab+ be+ ac + abe
i)y Prove & is associative.
Consider the algebraic sysiem consisting of the set of real numbers, K, and the operation &

i) Find the wdentity element for this binary operation,

iv} By considenng the inverse of the element @, show that this system is not a group.

v) A group can be formed using this operation and a subset of H. State how & can be amended
to form this subset, (NICCEA)

Real vector spaces

Giroups have one binary operation. ln vector spaces, there are two operations:
addition and multiplication. The simplest, interesting real vector space is the
two-dimensional vector space H-.

Just as with groups, to check that we have a real vector space, we need to
verily that certain properties are satisfied.

A real vector space consists of a set of vectors V., which admit of two
aperations, < and ., and have the [ollowing six properties:

(V. <+ yis an abelian group. The identity ol this group is the zero vector 0.
If ¥ is a vector in V and 4 € R, then 4. ¥ is a vector in V.

IFvand ware vectorsin Fand 2 c B then 2.(v +w) = A.v+ 4.v.

iftve Vand 2. B then {4+ pl.v= s, v+ p.v,

Ifve Vand 4 € [ then Ap.vi = (Au).v.

Foranyv < I 1.y =v.
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A basis is a spanning s¢t that is also a linearly independent set. A basis exisits
in any real vector space. Any two bases of the same vector space have the same
number of elements.

The vectors i, j. and k forf a basis for three-dimensional space.
The number of elements in a basis of ¥ 1s called the dimension of 1,

The veciors 1| and 1 form a basis for the set of all complex numbers. Thus, the
set of all complex numbers have dimension two when regarded as a real vector
space.

Linear mappings
A Lnear mapping T : I — P is one which satisfies
Tisvy = 2Tiv) lorevervie B ve I
and
Tiv + w) = Tiv} + Tiw)
Linear mappings are completely determined by their effect on a basis.

For example, consider an anticlockwise rotation of 907 in B*. This moves
vector i onto j, and 1 also moves jonto —i. It follows that the vector 2i + 3 is
carried to 2§ + 3(—i).

Now, if we use €, to denole i. the first basis element, and e; 1o denote j. the
second basis element, we have

T{E|}=t': Tlt‘:}= —€
For convenignce, we represent e; by the column vector ( :: ) and e; by the
(1)
column vector .
We can then represent T by the matrix
- |
-1 %)

which gives

Tle|}=T({1}) = (?) =8
Te:) = T(?) - ( hl) -

We note that T depends on our choice of basis.

and

Example 16 illusirates the difference that a change of basis can make to a
transformation matrx.
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6 The linear transformation T : B* — R’ is defined by

7(3)=(1 5)(C)

a) Describe all the points in the image of T.
b) Write down the dimension of the image of T.
¢) Find a spanning set for the image of T.

7 Certain sets of functions can be viewed as real vector spaces. For example, consider the set
T:= {funclil::—ns If:R—R,M(x)=a,+ Z [b, sinnx + a, cos rr.r]}
me=

*Weciors™ in the vector space T are really functions.

a) Prove that T forms a real vector space.
b) Prove that the vectors sin x and sin 2x are linearly independent.

8 Let V' be a real vector space with operations + and .. A set U, with operations + and ., is said
to be a subspace of V if the following conditions hold:

o [/ contains 0.
& [/ 15 closed under additon.
e U is closed under scalar multiplication.

a) Prove that if U is a subspace of V, then U is also a vector space.
b) What is the smallest possible subspace of B'?

9 The set C of complex numbers can be regarded as a real vector space, where addition of
complex numbers, and multiplication of a complex number by a real scalar, are defined in the
usual way.

i) Show that {1,j} is a basis for this vector space.
Let u = a+ bj and v = ¢ + dj (where a, b, ¢ and o are real) be fixed complex numbers.
A mapping T : C — C is defined by T(z) = uz + vz* (where z* is the complex conjugate of =),

i) Show that T is a linear mapping.
iii) Find the matrix M associated with T and the basis {1.)}.

6|

iv) Given that M = ( 1 2

). find the complex number = for which uz + vz* = 1 + 4j.
iMEI

e
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Exercise 2B

1a) 13,670 By 5.501% g 55513 o) 345 @) L SEAE 2 a) i) 15, 15 W) WAeAT, 14503

k|

= A1) 29656, 1165
VE A ys

2B B T —10 @ DRAY, 04 e i fL b W 2R, 30V 40 r
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ANSWERS

2 @) 1) =4 (max), § (min) W) 233135303 DO =4 (max), £ (min) W) 21687, 3687 3 a) 3600 + 5313 +60
3 b) 360w — 2262 £60° €) IB0n" — 7.5, 100" + 525" d) 600 + 15 4 (=1)"10" @) 60w’ 60n° - 17.7

Exercise 2C

18 -x/6 b) m/t €) Se/b d) n/d @) m/d 0 164" 0r032MBrad 3 x/I0 5 360n —668 + 1420 6 8) I3 B) 674
8 c) 360n" - 674" £ T2 T 0) VIBcos(i+ 2320 W) IR SRl 36007 - 232+ K25 B a) 1269270

8 b) 180w +90°, 60"+ 15" 9 &) 25, TAT" b} 360n" + 206" or 360a' + 1268° ) oG s el | 10 60 : 195, 348

11 Jcos(f = 60°'), 360n" < 60F £40° 12 8) 85, 0054 rad B) 2me - 0054+ | 369 13 a) 25 B) —25 ) 185 rad

13 d) 3Bdrad, 6.06rad 18 1) a) 15,5503 B) 1569 2769 W) mm /3

Exercise 2D
5 i vz 2 2y l=x* Bsin "2y 6N tan " 51y’
1(a b . . B
() I ll-i-ﬂ.l.'! < Wi =2x 16 +9x7 o vil-x 0 b+ An? 40 Wl =dg? h I+ 25¢

Inﬁ ﬂ-.ﬁld-I Za) ﬂu"(§}+r k) ﬂn"(%}+r :}%dn'(—z&:};r d]qlsin"(!%)--:' @) %larﬂ(%) s

10 ::—mn"(i) +r g %m"{%) +e¢ hj II_SIMI(E) +c Ja)a/2 B)=/E € =/2 d) n/6nT w) =S5

4 3
4 8) 00505 b) 0.0444 ) D6IS d) 00741 o) 0841 00207 S =/24 6 9—(x—2F. 23 r:-il--Ef-*i
- = 4
dr
\l"j X yex X = T —
PR 10 W) - L n, LT =1
3 12 1--.[':1.11 } n'l_l-_f m 2 Bl (T) i 12 i) _"Il'] I
Exercise 3B

1) xi+pl=16 DYr=3 e ye? drisyicarsa/cT+)! @ xisplsax=av 4 ' =d-dy

)
28) r=3 B) rlsinlid =32 EIF—T—{]+IT:;F=I dy r=6oosl #) rl+Brainf = 16 B el = cos i

Exercise 3D

T='a® ra’ xa* ma? zat LY - . g iz
'_4! I-]T b) c) :T 4 5% 3 co ( ‘1) S a) r’ = sin'tl h}ll‘l—H-

l(l.i).(l.’—); ™ _ i H:J-‘—'; sy B

Exercise 3E

—u/d L

& e EEHI '..iJ-

w il 5
'h"'i1y= v, ﬂr=7i'..th -3. e !I]j':_tm b) x=za
ab) = iy s ﬁmﬂ-mﬁﬂ:ﬂ.%.——‘.u 6 b) (0.667, 0.421), (0.667, —0.421) n-]u’(:f)

1 y=bl8%y=1088a 28} y=

16 6 4
“"““‘“"(3*%) €) 133 9ajr=2 b)rcosf=3 ﬂrﬂ“(ﬂﬂ-{-);zvﬁ

Exercise 4A
18) 2 b) VATEI "’;L! dsecx o) VST B2% By=lr-fiet Byeofelicet dpetif

By=x'dex? Byrmia=D'lnix=D+er=1" 7ypsinx=3csins-JeMcosx+c Ba) ' =x+c¢
BB D y=(x=1)k" My=0 ®y=(c+iche”,p=(l+4ix’dc” 10 y=xcosx+ccosx

Nyp={rtexrtpeflx+dxr?) WWyraxicrsex? BHhr= ™ 14 = 2000002 + sec?

-+ f
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ANSWERS

Tim 2+ 4, =0 =2+ Three plancs meet al point: planes form tnangular prism: teo planes comcident
83) (a-Mib-clic—aMa+b+e) b) -5 9 x==1T,y=8, :==1 W) Two parallel planes, intersacting third plane

10 1) (p+1Mg—2) W) 7 W) Shealof planes 11 (= 1. §r. 1) three planes intersest m line 1= % = 5. 120) g 42

1MW) p=—dg=2 W) g=2p#—4

Exercise BA

v (3o (2) e () o(3) - (3) () = (3) o)
oo (1) o) e (1) () we=(3) () e () ()

x—2 ] =35 x=4 y=-8 :+6 =7 y=4 24| .
LR P s LA ek - - - =i
" 3 4 -7 b) -2 3 [ % 2 -1 = 1

o (3 0) () ) ()
o (33) v e enn () ()3

4 -1
6 c) r=( I +:( I ) TWI OR195VE say i 1:2:-2 L fo-1 B 3i-d:-S W) 35V -4/5VE -1 V3
-5 ) -1

#c) i) 3:2:=5 W) 3VIE VIR -S/VER @y 1:-2:-3 W) 1V =2 WTE - T
10 a) r-ll-i-]-l-i +r=-+4j+2k) d) 15T MBr= =W+ 1k + i+ 2)-3Kk) ) (5, 1.-2) o) 43 N (450 -0.5)

I L]
12 &) (4, -1, -3) b} 714" t:n}.:(z)ﬂ(a) B) 217 14 4Ti-9f+ 6k a=-3 15 a)i-3-k ¢ 982
3 -3

7 1

16 0 (23,5 W40 17 a) 0.048md 18 (1,1, -12) Ill}r-.(-ﬂ.)u(-—i) i 5+ 2+ 5k
7 1

Exercise 6B

3 9
1 a) ~H4+Tj+11k b) Jli+22j+k cf 24+ 14fj« 16k d) <32i+23—10k 2 a) r.(—ﬁ) =-13 B r.( T ) =47
4 3

8
!ﬂl‘,(—-lT) =41 3B Ir+y+Ti=4 B) Ix+dy+dz=8 ) ~x+ S+ iz Twd 4 a) 685 bB) M1 ) 151

18
353
4 d) 455 S52901° B0 ?r.(dfﬁﬁ]::f‘i.zﬁ Sa)l) 13 W) —1%+8+5k B0 +8 W27
-1/v2
-1 1 4
lhllll]r.(! =3 Qo) -i+E-4dk B)Ji+j-k I}r:(l +r(l3) 10 8} r=24+6+rl+ ]+ 2k
2 1 25
k] I
10 €) (35,17, 32) o) 18TO1 99 ) 360+ 12f + 9% h}r,(il)-‘l e (-3 1) 120 -i+j+k 13 r.(ﬁ)—l-‘-‘
9 =1

1 1]
14 r= (—l)+r(2) ) —x+5p+dz=46 ) 120+ 014 -4k 15 0) -i=2+k W) 3LB" 18 3i+ 5k =15, 144
T -1

MW Ix+y+2=]S ) S-x=y=: Ba)A-3-2k b} {VIT ehr(A-3-Wi=-T7 d) Ir-Jy-2s= -7



ANSWERS

18 e} "?l" 132 19i=3-3k 2000 W M4k W) 8- 2 5k Iﬂt—(|
VIT

— Vi
e S
=
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L‘j = 10
-d
T —

p—2 a3

M -lawhii,s Z2E)TieG-dk o€} TR d) (-3 L4l e) (I ﬂal]- l':' : B) ¥l
i 2\
Moa) (-3 By Doy dre - &) 0O 20 THik ) -4 W= |02 e m) b1 3 [ ]
5 1
) vr=rez-bl TaA)i-30 1) B) ~A -] g x-dp-csrdat W I:-2:4v-p-c=0 Fa)i)li-3jsnk

2 3 2
2% a} 0l r, ( - ?) =04 Bl r (—1) $ F( I ) i) Oppusite sidz of plane to origin; distance 1 from [T
1) . I

I =3
:uu:mr_[n)-r BY W) 3r s Sz el=0 BMayrodsljekondcjoik b) (L1 4 e H-j-k d]'h;_-:
I -

L ' 53 ' -1 3 . 17 i
3 e} (84T 32N b R A Wyr=f 2| o |LsoE W) - 33D W | -1p ] @
i —1 3 o 3 Vi 14 Va3
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(]

Exercise 6C . -

1 -73 2177 32 45 S50 @ EF ““'L-% 6 &) —308— 15) + 45k hlr-—-(l)—r(]) dj 35
’ 2 L =3

Ta)Si-odj-dk B) 100 ) S0 Ba) ki Jjedk B AIVER L ey wfie i S0 did, [ d) e) 952

Exercise TA
To)sshyzd Blyzlrsd Brx=—fr=dy=Ff Bx=-ly=x-2 WHx=-2 W7
. . i6 54 ) , X . . .
Mhprel v==1y=I00 #) o e —y |I|}1“.|.!"l 128 i=l,a=2w1-lx==-1-23 B)IE 241l 5}
[v=21" v+ 2} ;
il [l i 3 ]
12 a) §) » t.y= s A U =l =1} 18 a) . B y=2 W)y y=Iral g) (AL Emin 150 re 24 |1 5
k- b, L L] -
i 2 1
1Siil) = Zv=l.xv=-1 W it—5.2} 18 8) |' ) y=.x=0 oyl tho-0,-1
il =rr -
Exercise 7B
1) vr=la<=2 Blxa>l g =l x= =1 ) x=55< =14 .‘]"_:I""a."_f B t=x=d
Za) ror -l —jwxeall B raflercd g deraddeyiiL ddoyaijora -1 d) ~Taor ey
2] 2oxall da)y-q=aixd -l B -Saxs-lixdESd) g fow I idp d) wxb T = xw(x F -5
Jef xrSixc—Jird=2) Pax-2Hixd -3 Sa)l>xx=2 bBjaxla<—% €} 2{x £ ~1}
Ex>4-~-loycld Gyl xac-] Tizxl-locscl B -lures-llcred Blocxebo«-—l

tHE L) B Ome By -dex] MWrer-lxs-7 MWMLLAEy=x41

15

11w} s [, fx) 2> 4004,

15 B) 0L 30— .0 B s

Exercise 8A

18) -3, -7 BPILS o =5 -4 d} -4, § @ -2 -5 f -2~ 2a)x"-Tx+15=0 B) ' +3x+5=0
et rdv-d=0 A5 -0l=0 Fapl B -l &) - &BHIed Wpi-H SO -0 W -F-h
Bx-da? —3x-28=0 ThH-6 8Iei-llxsli=n 9a)ld
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ANSWERS

T nu.‘r-ﬁ }(T-w)——v&(v—z) 0.719448
Ixt A’

8 MOS + k) = —2 — 28k — 784h” Sensitive because derivative larpe near x = 0.5 9 p= 1 + 23 —-

10 a) 3(1 Ei)l_r-r—”‘.l (:+Jf+ﬁ(t+%){1+1f B r=léx+drials 09 1 yr=3adesdn -TTT

12 8) 09 B) DB3E2 ) 07607 13 @) 11 B) 1221 14 a) x =227, v = =031 B) %}; &l =20 15 8) 1628

16 b) y=x2Inx+ 1) <) B6% 16 L0025, 00051, 0.00TE ITI]I]—----I--}E i) 022 B) 1) v = Ae™ 4+ He'
L

17 b) W) x=¢c - 0.245 18 221,064 19 20766, 20743 20 0.049, |

Exercise 14A
-0 4 -9 0 -1 2
v 5) (i ) (¥ 5)»(4 ) "
1 . PQ#QF 2a) b) gl -5 1+ <2l a1 <1 =3
(ss 18 4 -3 -1 2 R >y %
-§ 4 0
[ 12 s kK , -2 -1 Ix
2 -—|-17 =3 -19|] 3|-2 2 5a) 2001 =5 | B)19.-14 -2
M1\ s - -n 33 -5\ 3 -1 -3x
i L n
] ¥
frm -4 1 —a 0
8 —|-4 4 3 T + i i 0 i) (~1,1,0)
Wiy -21 4 —5—:1' a'=5 l+a
] y d
1 i a i
Ja-1 a+l -4
1 2 1 3 1 -1 @ 1 |
W —_ 1 -1 -2]. f—, == N [—— =1 —
h-ﬁ( -3 -3 5) (I—n l-a I—u) b 1 0 1 0 a 2
] ] ] 1
-0 —
2a Ta
! ’ e 2 -3 _ 1 AA —A (—117A
12 “lﬂ_- Jﬂ.';ﬁ 5::# _EI i ;h-g]‘:"-(m_sﬂ)h Il -AA A=

L 4 =2 -3
MWd)x-y=—s=l-x+y—z=0-x—yp+r=kx=ly=r=-} L. -4 1a) (1 4 4) dj ( I o —1)
I &

3
100 100 L[ 00

15a) [0 4 3 By |0 8 7 d—=|0 1 I—Z‘]
(unl) ('DU-I loo 2

Exercise 14B
1 Raotation clockwise about O through 2x/3 .
2 Reflection in y-axis, followed by onc-way stretch in y-direction, scale factor 2 (‘n’ 'I‘) ( ;
L]

]
o —

3 Sheur in v-direction moving (0, Lo (=1, 1) 1) il} Rowtion clockwise about O through #/3

2
i
a

1
2
V3
2
&0 0.0 (0,24 6150 e 501 6wl -l hl(_'l}.(:) 705 -1 m(:)(_zl) B 6.5

! [ | -1 2 1 - 3
Ba)d-3 ¢ (-I) d}(—l -1 1) 99 -1 w(z) el (: -1 ) 10 -1115.{_,) i) x+dy=10
-2 -2 1 0 2 -1 12

1
10 8) 25 11 a) -2.1 Bb) (J) ﬂ{-[a—l.h+rn,++{a+b—l‘:j!3+{ld+b+r}f1 1!-]4_—2;{'),( . )
1

ta b |

414
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Mathematics

Further Pure Mathematics has been written to match the requirements of all the

new A Level specifications.

It covers in one volume all the pure mathematics required by students taking
further mathematics. It also provides the basis for mathematics encountered
in Higher Education.

A clear text is supported by worked examples, exercises, and examination

gquestons.

Other Advanced Level texts from Oxford include:

ntroducing Pure Mathematics (2nd edition) by Robert Smedley and Garry Wiseman
ISBN O 19 914803 |

ntroducng Mechanics by Brian |efferson and Tony Beadsworth
ISBNO 199147108
Introducing Statistics {Z2nd edition) by Graham Upton and lan Cook
I5SBN 0 19914801 5
r Mechanics by Brian Jefferson and lony Beadsworth

ISBNO 199147388

Inderstanding Statistics by Graham Upton and lan Cook
ISBNO 192914391 9




